def test_load(): import datetime """Load the historical data json file: list(dict(dict())) Convert to list(list()), print, and return """ data=load_json(filename='data/bitcrawl_historical_data.json',verbose=False) if not data: return data columns=[] for record in data: if 'mtgox' in record.keys(): mtgox = record['mtgox'] columns.append([]) #add an empty row if 'datetime' in mtgox.keys(): # add the time to the empty row # leave it as a string and I'll convert to a value dt = datetime.datetime.strptime(mtgox['datetime'][0:-6],"%Y-%m-%d %H:%M:%S.%f") dt_value = float(dt.toordinal())+dt.hour/24.+dt.minute/24./60.+dt.second/24./3600. columns[-1].append(dt_value) if 'average' in mtgox.keys(): # float() won't work if there's a dollar sign in the price value = float(mtgox['average'].strip().strip('$').strip()) # add the value to the last row columns[-1].append(value) import pprint pprint.pprint(columns,indent=2) return columns
) p.add_argument( '-f','--path','--filename', type = str, #nargs = '*', # other options '*','+', 2 default = bc.FILEPATH, help = 'File to append the numerical data to (after converting to a string).', ) return p.parse_args() if __name__ == "__main__": o = parse_args() data = None if not o.quiet or o.verbose: data = bc.load_json(filepath=o.path,verbose=-2) print o.graph sites, values, datetimes = bc.parse_query(o.graph) print 'sites',sites print 'values',values rows = bc.retrieve_data(sites,values,datetimes) NM = size(rows) assert NM[1]>=NM[0], size(rows) #cols = bc.transpose_lists(rows) bc.display_correlation(rows=rows, labels=o.graph, leads=o.lead) #bc.plot_data(columns=cols,normalize=True) if not o.nomine: # mine hard-coded urls