Ejemplo n.º 1
0
def new_neuron():
    # 1. Init Config item.
    config = {
        'session': {
            'datapath': 'data/',
            'learning_rate': 0.01,
            'momentum': 0.9,
            'batch_size_train': 64,
            'batch_size_test': 64,
            'log_interval': 10,
            'sync_interval': 100,
            'priority_interval': 100,
            'name': 'mnist',
            'trial_id': '1608070667'
        },
        'synapse': {
            'target_dim': 10
        },
        'dendrite': {
            'key_dim': 100,
            'topk': 10,
            'stale_emit_filter': 10000,
            'pass_gradients': True,
            'timeout': 0.5,
            'do_backoff': True,
            'max_backoff': 100
        },
        'axon': {
            'local_port': 8091,
            'external_ip': '191.97.53.53',
            'max_workers': 5,
            'max_gradients': 1000
        },
        'nucleus': {
            'max_workers': 5,
            'queue_timeout': 5,
            'queue_maxsize': 1000
        },
        'metagraph': {
            'chain_endpoint': '206.189.254.5:12345',
            'stale_emit_filter': 10000
        },
        'meta_logger': {
            'log_dir': 'data/'
        },
        'neuron': {
            'keyfile': None,
            'keypair': None
        }
    }

    config = Munch.fromDict(config)

    logger.info(Config.toString(config))
    mnemonic = Keypair.generate_mnemonic()
    keypair = Keypair.create_from_mnemonic(mnemonic)
    neuron = Neuron(config)
    neuron.keypair = keypair
    return neuron
Ejemplo n.º 2
0
 def add_args(parser: argparse.ArgumentParser):
     parser.add_argument('--session.learning_rate',
                         default=0.01,
                         type=float,
                         help='Training initial learning rate.')
     parser.add_argument('--session.momentum',
                         default=0.9,
                         type=float,
                         help='Training initial momentum for SGD.')
     parser.add_argument('--session.batch_size_train',
                         default=64,
                         type=int,
                         help='Training batch size.')
     parser.add_argument('--session.batch_size_test',
                         default=64,
                         type=int,
                         help='Testing batch size.')
     parser.add_argument(
         '--session.log_interval',
         default=150,
         type=int,
         help='Batches until session prints log statements.')
     parser.add_argument(
         '--session.sync_interval',
         default=150,
         type=int,
         help='Batches before we we sync with chain and emit new weights.')
     parser.add_argument(
         '--session.root_dir',
         default='~/.bittensor/sessions/',
         type=str,
         help='Root path to load and save data associated with each session'
     )
     parser.add_argument(
         '--session.name',
         default='cifar',
         type=str,
         help='Trials for this session go in session.root / session.name')
     parser.add_argument(
         '--session.trial_uid',
         default=str(time.time()).split('.')[0],
         type=str,
         help=
         'Saved models go in session.root_dir / session.name / session.trial_uid'
     )
     parser.add_argument('--session.record_log',
                         default=True,
                         help='Record all logs when running this session')
     parser.add_argument(
         '--session.config_file',
         type=str,
         help=
         'config file to run this neuron, if not using cmd line arguments.')
     Neuron.add_args(parser)
     DPNSynapse.add_args(parser)
Ejemplo n.º 3
0
 def check_config(config: Munch):
     assert config.session.momentum > 0 and config.session.momentum < 1, "momentum must be a value between 0 and 1"
     assert config.session.batch_size_train > 0, "batch_size_train must a positive value"
     assert config.session.learning_rate > 0, "learning_rate must be a positive value."
     full_path = '{}/{}/{}'.format(config.session.root_dir,
                                   config.session.name,
                                   config.session.trial_uid)
     config.session.full_path = os.path.expanduser(full_path)
     if not os.path.exists(config.session.full_path):
         os.makedirs(config.session.full_path)
     BertNSPSynapse.check_config(config)
     Neuron.check_config(config)
Ejemplo n.º 4
0
 def check_config(config: Munch):
     assert config.session.log_interval > 0, "log_interval dimension must be positive"
     assert config.session.momentum > 0 and config.session.momentum < 1, "momentum must be a value between 0 and 1"
     assert config.session.batch_size_train > 0, "batch_size_train must be a positive value"
     assert config.session.batch_size_test > 0, "batch_size_test must be a positive value"
     assert config.session.learning_rate > 0, "learning rate must be be a positive value."
     full_path = '{}/{}/{}/'.format(config.session.root_dir, config.session.name, config.session.uid)
     config.session.full_path = full_path
     if not os.path.exists(config.session.full_path):
         os.makedirs(config.session.full_path)
     FFNNSynapse.check_config(config)
     Neuron.check_config(config)
Ejemplo n.º 5
0
 def add_args(parser: argparse.ArgumentParser):    
     parser.add_argument('--session.learning_rate', default=0.01, type=float, help='Training initial learning rate.')
     parser.add_argument('--session.momentum', default=0.9, type=float, help='Training initial momentum for SGD.')
     parser.add_argument('--session.batch_size_train', default=64, type=int, help='Training batch size.')
     parser.add_argument('--session.batch_size_test', default=64, type=int, help='Testing batch size.')
     parser.add_argument('--session.log_interval', default=150, type=int, help='Batches until session prints log statements.')
     parser.add_argument('--session.sync_interval', default=150, type=int, help='Batches before we we sync with chain and emit new weights.')
     parser.add_argument('--session.root_dir', default='data/', type=str,  help='Root path to load and save data associated with each session')
     parser.add_argument('--session.name', default='mnist', type=str, help='Trials for this session go in session.root / session.name')
     parser.add_argument('--session.uid', default=str(time.time()).split('.')[0], type=str, help='Saved models go in session.root_dir / session.name / session.uid')
     Neuron.add_args(parser)
     FFNNSynapse.add_args(parser)
Ejemplo n.º 6
0
    def __init__(self, config: Munch):
        self.config = config

        # ---- Neuron ----
        self.neuron = Neuron(self.config)

        # ---- Model ----
        self.model = BertNSPSynapse(self.config)

        # ---- Optimizer ----
        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=self.config.session.learning_rate,
                                         momentum=self.config.session.momentum)
        self.scheduler = WarmupCosineWithHardRestartsSchedule(
            self.optimizer, 50, 300)

        # ---- Dataset ----
        # Dataset: 74 million sentences pulled from books.
        self.dataset = load_dataset('bookcorpus')

        # ---- Logging ----
        self.tensorboard = SummaryWriter(log_dir=self.config.session.full_path)
        if self.config.session.record_log:
            logger.add(
                self.config.session.full_path + "/{}_{}.log".format(
                    self.config.session.name, self.config.session.trial_uid),
                format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}")
Ejemplo n.º 7
0
    def __init__(self, config: Munch):
        self.config = config

        # ---- Neuron ----
        self.neuron = Neuron(self.config)

        # ---- Model ----
        self.model = BertMLMSynapse(self.config)

        # ---- Optimizer ----
        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=self.config.session.learning_rate,
                                         momentum=self.config.session.momentum)
        self.scheduler = WarmupCosineWithHardRestartsSchedule(
            self.optimizer, 50, 300)

        # ---- Dataset ----
        # Dataset: 74 million sentences pulled from books.
        self.dataset = load_dataset('bookcorpus')['train']
        # The collator accepts a list [ dict{'input_ids, ...; } ] where the internal dict
        # is produced by the tokenizer.
        self.data_collator = DataCollatorForLanguageModeling(
            tokenizer=bittensor.__tokenizer__(),
            mlm=True,
            mlm_probability=0.15)

        # ---- Logging ----
        self.tensorboard = SummaryWriter(log_dir=self.config.session.full_path)
        if self.config.session.record_log:
            logger.add(
                self.config.session.full_path + "/{}_{}.log".format(
                    self.config.session.name, self.config.session.trial_uid),
                format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}")
Ejemplo n.º 8
0
    def __init__(self, config: Munch):
        self.config = config

        # ---- Neuron ----
        self.neuron = Neuron(self.config)

        # ---- Model ----
        self.model = DPNSynapse(
            config)  # Feedforward neural network with PKMDendrite.
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(self.device)  # Set model to device

        # ---- Optimizer ----
        self.optimizer = optim.SGD(self.model.parameters(),
                                   lr=self.config.session.learning_rate,
                                   momentum=self.config.session.momentum)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
                                                         step_size=10.0,
                                                         gamma=0.1)

        # ---- Dataset ----
        self.train_data = torchvision.datasets.CIFAR10(
            root=self.config.session.root_dir + "datasets/",
            train=True,
            download=True,
            transform=transforms.Compose([
                transforms.RandomCrop(32, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
            ]))
        self.trainloader = torch.utils.data.DataLoader(
            self.train_data,
            batch_size=self.config.session.batch_size_train,
            shuffle=True,
            num_workers=2)
        self.test_data = torchvision.datasets.CIFAR10(
            root=self.config.session.root_dir + "datasets/",
            train=False,
            download=True,
            transform=transforms.ToTensor())
        self.testloader = torch.utils.data.DataLoader(
            self.test_data,
            batch_size=self.config.session.batch_size_test,
            shuffle=False,
            num_workers=2)
        self.test_data = torchvision.datasets.CIFAR10(
            root=self.config.session.root_dir + "datasets/",
            train=False,
            download=True,
            transform=transforms.ToTensor())

        # ---- Tensorboard ----
        self.global_step = 0
        self.tensorboard = SummaryWriter(log_dir=self.config.session.full_path)
        if self.config.session.record_log:
            logger.add(
                self.config.session.full_path + "/{}_{}.log".format(
                    self.config.session.name, self.config.session.trial_uid),
                format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}")
Ejemplo n.º 9
0
    def __init__(self, config: Munch):
        if config == None:
            config = Session.build_config()
        self.config = config

        # ---- Neuron ----
        self.neuron = Neuron(self.config)
    
        # ---- Model ----
        self.model = FFNNSynapse( config ) # Feedforward neural network with PKMRouter.
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to( self.device ) # Set model to device
        
        # ---- Optimizer ---- 
        self.optimizer = optim.SGD(self.model.parameters(), lr=self.config.session.learning_rate, momentum=self.config.session.momentum)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=10.0, gamma=0.1)

        # ---- Dataset ----
        self.train_data = torchvision.datasets.MNIST(root = self.config.session.root_dir + "datasets/", train=True, download=True, transform=transforms.ToTensor())
        self.trainloader = torch.utils.data.DataLoader(self.train_data, batch_size = self.config.session.batch_size_train, shuffle=True, num_workers=2)
        self.test_data = torchvision.datasets.MNIST(root = self.config.session.root_dir + "datasets/", train=False, download=True, transform=transforms.ToTensor())
        self.testloader = torch.utils.data.DataLoader(self.test_data, batch_size = self.config.session.batch_size_test, shuffle=False, num_workers=2)

        # ---- Tensorboard ----
        self.global_step = 0
        self.tensorboard = SummaryWriter(log_dir = self.config.session.full_path)
Ejemplo n.º 10
0
    def __init__(self, config: Munch):
        self.config = config

        # ---- Build Neuron ----
        self.neuron = Neuron(config)

        # ---- Build FFNN Model ----
        self.model = FFNNSynapse(self.config)
        self.model.to(
            torch.device("cuda" if torch.cuda.is_available() else "cpu"))
        self.neuron.axon.serve(self.model)

        # ---- Optimizer ----
        self.optimizer = torch.optim.SGD(self.model.parameters(),
                                         lr=self.config.session.learning_rate,
                                         momentum=self.config.session.momentum)

        # ---- Logging ----
        self.tensorboard = SummaryWriter(log_dir=self.config.session.full_path)
        if self.config.session.record_log:
            logger.add(
                self.config.session.full_path + "/{}_{}.log".format(
                    self.config.session.name, self.config.session.trial_uid),
                format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}")
Ejemplo n.º 11
0
 def add_args(parser: argparse.ArgumentParser):
     parser.add_argument('--session.learning_rate',
                         default=0.01,
                         type=float,
                         help='Training initial learning rate.')
     parser.add_argument('--session.momentum',
                         default=0.98,
                         type=float,
                         help='Training initial momentum for SGD.')
     parser.add_argument('--session.epoch_length',
                         default=10,
                         type=int,
                         help='Iterations of training per epoch')
     parser.add_argument('--session.batch_size_train',
                         default=1,
                         type=int,
                         help='Training batch size.')
     parser.add_argument(
         '--session.sync_interval',
         default=100,
         type=int,
         help='Batches before we sync with chain and emit new weights.')
     parser.add_argument('--session.log_interval',
                         default=10,
                         type=int,
                         help='Batches before we log session info.')
     parser.add_argument(
         '--session.accumulation_interval',
         default=1,
         type=int,
         help='Batches before we apply acummulated gradients.')
     parser.add_argument(
         '--session.apply_remote_gradients',
         default=False,
         type=bool,
         help=
         'If true, neuron applies gradients which accumulate from remotes calls.'
     )
     parser.add_argument(
         '--session.root_dir',
         default='~/.bittensor/sessions/',
         type=str,
         help='Root path to load and save data associated with each session'
     )
     parser.add_argument(
         '--session.name',
         default='bert-nsp',
         type=str,
         help='Trials for this session go in session.root / session.name')
     parser.add_argument(
         '--session.trial_uid',
         default=str(time.time()).split('.')[0],
         type=str,
         help=
         'Saved models go in session.root_dir / session.name / session.uid')
     parser.add_argument('--session.record_log',
                         default=True,
                         help='Record all logs when running this session')
     parser.add_argument(
         '--session.config_file',
         type=str,
         help=
         'config file to run this neuron, if not using cmd line arguments.')
     BertNSPSynapse.add_args(parser)
     Neuron.add_args(parser)