def test_run_outliers_comps(): with open("tests/pidgin_example.pickle", "rb") as fh: df, annotations, outliers, fractable, qvalues = pickle.load(fh) test_outliers, test_qvals = bsh.deva(df, annotations) assert sum( annotations.columns.sort_values() != test_qvals.comps.sort_values() ) == 0
def test_run_outliers_fracTable(): with open("tests/pidgin_example.pickle", "rb") as fh: df, annotations, outliers, fractable, qvalues = pickle.load(fh) test_outliers, test_qvals = bsh.deva(df, annotations) fractable = fractable.sort_index().sort_index(axis=1) test_outliers.frac_table = test_outliers.frac_table.sort_index( ).sort_index(axis=1) assert fractable.equals(test_outliers.frac_table)
def test_run_outliers_qvals(): with open("tests/pidgin_example.pickle", "rb") as fh: df, annotations, outliers, fractable, qvalues = pickle.load(fh) _, test_qvals = bsh.deva(df, annotations) test_qvals.df = test_qvals.df.sort_index().sort_index(axis=1) qvalues = qvalues.sort_index().sort_index(axis=1) assert qvalues.equals(test_qvals.df)
#https://towardsdatascience.com/how-to-program-umap-from-scratch-e6eff67f55fe from umap import UMAP plt.figure(figsize=(20,15)) model = UMAP(n_neighbors = 15, min_dist = 0.25, n_components = 2, verbose = True) umap = model.fit_transform(X_train) plt.scatter(umap[:, 0], umap[:, 1], c = y_train.astype(int), cmap = 'tab10', s = 50) #https://github.com/ruggleslab/blackSheep import blacksheep annotations = blacksheep.binarize_annotations(sample_labels) # Run outliers comparative analysis outliers, qvalues = blacksheep.deva( values, annotations, save_outlier_table=True, save_qvalues=True, save_comparison_summaries=True ) # Pull out results qvalues_table = qvalues.df vis_table = outliers.frac_table # Make heatmaps for significant genes for col in annotations.columns: axs = blacksheep.plot_heatmap(annotations, qvalues_table, col, vis_table, savefig=True) #https://github.com/ruggleslab/blacksheep_supp/blob/dev/vignettes/running_outliers.ipynb # Normalize values phospho = blacksheep.read_in_values('') #Fill in file here protein = blacksheep.read_in_values('') #Fill in file here