def test_vectors_as_mixed_matrices_and_ndarrays(self): x = array([[1., 2., 3.]]) y = asmatrix(array([[4., 5., 6.]])) expected = x.tolist() self.assertEqual(copy(x, y).tolist(), expected) self.assertEqual(y.tolist(), expected)
def test_row_and_col_vectors_as_ndarrays(self): x = array([[1., 2., 3.]]) y = array([[4.], [5.], [6.]]) expected = [[1.], [2.], [3.]] self.assertEqual(copy(x, y).tolist(), expected) self.assertEqual(y.tolist(), expected)
def test_negative_element(self): x = array([[1., -2., 3.]]) y = array([[4., 5., 6.]]) expected = x.tolist() self.assertEqual(copy(x, y).tolist(), expected) self.assertEqual(y.tolist(), expected)
def test_two_row_vectors_as_ndarrays(self): x = array([[1., 2., 3.]]) y = array([[4., 5., 6.]]) expected = x.tolist() self.assertEqual(copy(x, y).tolist(), expected) self.assertEqual(y.tolist(), expected)
def test_two_column_vectors_as_ndarrays(self): x = array([[1.], [2.], [3.]]) y = array([[4.], [5.], [6.]]) expected = x.tolist() self.assertEqual(copy(x, y).tolist(), expected) self.assertEqual(y.tolist(), expected)
def test_scalar_as_ndarray(self): x = array([[1.]]) y = array([[2.]]) expected = x.tolist() self.assertEqual(copy(x, y).tolist(), expected) self.assertEqual(y.tolist(), expected)
def test_unequal_strides(self): x = array([[1., 2., 3., 4., 5., 6.]]) y = array([[4., 5., 6.]]) expected = [[1., 3., 5.]] self.assertListEqual(copy(x, y, inc_x=2, inc_y=1).tolist(), expected) self.assertListEqual(y.tolist(), expected)
def test_strides_greater_than_length(self): x = array([[1., 2., 3.]]) y = array([[4., 5., 6.]]) expected = [[1., 5., 6.]] self.assertListEqual(copy(x, y, inc_x=3, inc_y=3).tolist(), expected) self.assertListEqual(y.tolist(), expected)
def test_float64_dtype(self): x = array([[1., 2., 3.]], dtype='float64') y = array([[3., 2., 1.]], dtype='float64') self.assertEqual(x.dtype, 'float64') self.assertEqual(y.dtype, 'float64') expected = x.tolist() self.assertListEqual(copy(x, y).tolist(), expected) self.assertListEqual(y.tolist(), expected)
def passed_test(dtype, as_matrix, x_is_row, y_is_row, provide_y, stride): """ Run one vector copy test. Arguments: dtype: either 'float64' or 'float32', the NumPy dtype to test as_matrix: True to test a NumPy matrix, False to test a NumPy ndarray x_is_row: True to test a row vector as parameter x, False to test a column vector y_is_row: True to test a row vector as parameter y, False to test a column vector provide_y: True if y is to be provided to the BLASpy function, False otherwise stride: stride of x and y to test; if None, a random stride is assigned Returns: True if the expected result is within the margin of error of the actual result, False otherwise. """ # generate random sizes for vector dimensions and vector stride (if necessary) length = randint(N_MIN, N_MAX) stride = randint(N_MIN, STRIDE_MAX) if stride is None else stride # create random vectors to test x = random_vector(length, x_is_row, dtype, as_matrix) y = random_vector(length, y_is_row, dtype, as_matrix) if provide_y else None # create view of x that can be used to calculate the expected result x_2 = x.T if x_is_row else x # compute the expected result if stride == 1: y_2 = x_2 else: # y is provided if provide_y: y_2 = np_copy(y.T) if y_is_row else np_copy(y) for i in range(0, length, stride): y_2[i, 0] = x_2[i, 0] # get the actual result y = copy(x, y, stride, stride) # if y is a row vector, make y_2 a row vector as well if y.shape[0] == 1: y_2 = y_2.T # compare the actual result to the expected result and return result of the test return allclose(y, y_2)
def test_y_not_provided_with_stride_greater_than_one(self): x = array([[1., -2., 3.]]) expected = [[1., 3.]] self.assertEqual(copy(x, inc_x=2).tolist(), expected)
def test_y_not_provided_with_column_vector(self): x = array([[1.], [2.], [3.]]) expected = x.tolist() self.assertEqual(copy(x).tolist(), expected)
def test_y_not_provided_with_row_vector(self): x = array([[1., -2., 3.]]) expected = x.tolist() self.assertEqual(copy(x).tolist(), expected)