Ejemplo n.º 1
0
spectralRange = samplingRate/2.
c = 344.
sphericalHarmonics = bmaudio.sphericalHarmonics2D

spectrumBins = nBins/2+1
shFilters = dict( [ (shName, numpy.zeros(spectrumBins, numpy.complex))
	for shOrder, shName, _, shFunction, shWeight in sphericalHarmonics ])

w = 2*math.pi*spectralRange/spectrumBins * numpy.arange(spectrumBins)

print "Computing the filter for each spherical harmonic..."
for i in xrange(N) :
#	i = random.random() * N # Montecarlo sampling (instead of equidistant)
	e = 0.
	a = i * numpy.pi / N
	t = (bmaudio.sphericalHeadDelay(a+math.pi/2, R, r) - (r-R)) / c
	sinusoid = numpy.exp( 1j * t * w )
	for shOrder, shName, _, shFunction, shWeight in sphericalHarmonics :
		shFilters[shName] += shFunction(a,e) * sinusoid 

print "Obtaining the resulting filter for different orientations..."
steps = 72
orderFilters = {}
for azimuthDegrees in 360./steps*numpy.arange(steps) :
	orderFilters[azimuthDegrees] = {}
	for shOrder, shName, _, shFunction, shWeight in sphericalHarmonics :
		orderFilters[azimuthDegrees][shOrder] = numpy.zeros(spectrumBins, numpy.complex)
	for order in orderFilters[azimuthDegrees].keys() :
		for shOrder, shName, _, shFunction, shWeight in sphericalHarmonics :
			if shOrder>order : continue
			orderFilters[azimuthDegrees][order] += shWeight * shFunction(math.radians(azimuthDegrees),0) *  shFilters[shName]
Ejemplo n.º 2
0
		print "max", max(patternValues)
		pylab.polar(angles, patternValues, label="%s"%l)
	pylab.title("InPhase",horizontalalignment='center', verticalalignment='baseline', position=(.5,-.1))
	pylab.rgrids(numpy.arange(.4,1,.2),angle=220)
	pylab.legend(loc=2)
	pylab.savefig(figurePath(__file__,"pdf"))
	pylab.show()

if False:
	print "Filtering at 90 degrees"
	plot = bmaudio.SpectrumDisplay()
	plot.inDb()
	#plot.showPhase()
	plot.ylim(-40,5)
	delays = [
		(bmaudio.sphericalHeadDelay(azimuth, R, r)-(r-R))/c
		for azimuth in angles
		]
	for no in ordersToShow[:-1] :
		print no
		decoding = headDistortion.decoding3dMaxRe(no) / (no+1)
		decoding = headDistortion.decoding3dInPhase(no) 
		amplitudes = [ sum(
				(decoding[l] * float(sh_normalization2(l,0)) * float(sympy.legendre(l,cosTheta)) * math.sin(azimuth) / nSamples
				for l in xrange(0,no+1) ) )
			for azimuth, cosTheta in zip(angles, numpy.cos(numpy.pi/2-angles)) ]
		plot.addSpectrumData(headDistortion.delayAmplitudeToSpectrum(delays,amplitudes,w),spectralRange,"Order %i"%no)
	plot.show()

def deviated3dAmbisonics(pattern, planeWaveAzimuth, ringAzimuth, slices=72) :
	"""
Ejemplo n.º 3
0
	pylab.ylim(-2,2)
	pylab.grid(1)
	pylab.legend()
	pylab.show()



if False :
	"""Comparing the simplified delay with the one not considering R<<r.
	The remainder is multiplied by 100.
	It is a regular amplitude oscilation so that's why it is more significant
	on higher frequencies where the filter is lower, not because the absolute error increases.
	"""
	azimuths = fullAzimuths
	delays1 = numpy.array([headDelaySimplified(a) for a in azimuths])
	delays2 = numpy.array([bmaudio.sphericalHeadDelay(a,R,r)/c-r/c for a in azimuths])
	ordersToShow = xrange(0,1,1)
	for order in ordersToShow:
		print order
		ocolor=colors[order%len(colors)]
		oddOrder = order&1

		polarPattern = polarPatternY if oddOrder else polarPatternX
		pattern = [ polarPattern(azimuth, order) for azimuth in azimuths]
		spectrum1 = headDistortion.delayAmplitudeToSpectrum(delays1, pattern, w)
		spectrum2 = headDistortion.delayAmplitudeToSpectrum(delays2, pattern, w)

		remainder = spectrum1-spectrum2

		pylab.plot(100*numpy.real(remainder), ocolor+'--', label="RR"+str(order))
		pylab.plot(100*numpy.imag(remainder), ocolor+':', label="RI"+str(order))
if len(sys.argv)<2 or sys.argv[1] not in decodings.keys() :
	print "Please specify one decoding:", ", ".join(decodings.keys())
	sys.exit()
if len(sys.argv)<3 or not int(sys.argv[2]) :
	print "Please specify an order"
	sys.exit()
maxOrder = int(sys.argv[2])

decodingName=sys.argv[1]
decoding=decodings[decodingName](maxOrder)
print "decoding", decoding, "order", maxOrder


print "Computing delays..."
distances = numpy.array([
	bmaudio.sphericalHeadDelay(numpy.radians(a),R,r)
	for a in azimuths
	])
relativeDistances = distances + R - r # force closer distance be 0
delays = relativeDistances / c  # distance -> time


print "Computing simplified delays..."
distancesSimplified = numpy.array([
	bmaudio.sphericalHeadDelaySimplified(numpy.radians(a),R,r)
	for a in azimuths
	])
relativeDistancesSimplified = distancesSimplified + R - r # force closer distance be 0
delaysSimplified = relativeDistancesSimplified / c  # distance -> time

Ejemplo n.º 5
0
import pylab
from parameters import *

def figurePath(file, extension) :
	return os.path.join('figures', os.path.splitext(os.path.basename(file))[0] + "." + extension)

databaseFile = bmaudio.selectHrtfDatabase(sys.argv)
print "Using", databaseFile, "database."
print "Gathering files..."
hrtfDatabase = bmaudio.HrtfDatabase(databaseFile)

azimuths = numpy.arange(0,360,360/N)
radiansAzimuths = [math.radians(degrees) for degrees in azimuths]
sphericHeadDelays = dict([
	(azimuthDegrees, (
		bmaudio.sphericalHeadDelay(math.radians(azimuthDegrees), R, r) - (r-R)
		) / c
	)
	for azimuthDegrees in azimuths])
realHeadDelays = bmaudio.azimuthDelaysFromHorizontalHrtf(hrtfDatabase)
pylab.rcParams["figure.figsize"] = (8,5)
pylab.axes(polar=True).set_theta_zero_location("N")
pylab.axes(polar=True).set_thetagrids(
	range(0,360,45),
	labels= [str(g) for g in range(0,180+1,45)+range(-135,0,45)]
	)
pylab.polar(radiansAzimuths, numpy.array([sphericHeadDelays[azimuth] for azimuth in azimuths])*1000, "k--", label='Spherical head' )
pylab.polar(radiansAzimuths, numpy.array([realHeadDelays[azimuth] for azimuth in azimuths])*1000, "k-", label="Real head" )
pylab.ylabel("ms")
pylab.legend()
pylab.savefig(figurePath(__file__,"pdf"))