Ejemplo n.º 1
0
def mfm(sampler=hybrid, offset=0, gamma=1):
    return {
        "sampler":
        sampler,
        "mixture":
        lambda nc: bmcc.MFM(gamma=gamma,
                            prior=lambda k: poisson.logpmf(k, nc + offset))
    }
Ejemplo n.º 2
0
                               d=3,
                               r=0.7,
                               alpha=40,
                               df=3,
                               symmetric=False,
                               shuffle=False)


def hybrid(*args, **kwargs):

    for _ in range(5):
        bmcc.gibbs(*args, **kwargs)
    bmcc.split_merge(*args, **kwargs)


mm = bmcc.MFM(gamma=1, prior=lambda k: poisson.logpmf(k, 3))
# mm = bmcc.DPM(alpha=1, use_eb=False)
cm = bmcc.NormalWishart(df=3)

# Create mixture model
model = bmcc.BayesianMixture(data=dataset.data,
                             sampler=hybrid,
                             component_model=cm,
                             mixture_model=mm,
                             assignments=np.zeros(POINTS).astype(np.uint16),
                             thinning=THINNING)

# Run Iterations
start = time.time()
for i in tqdm(range(ITERATIONS)):
    model.iter()
Ejemplo n.º 3
0
# Create dataset
dataset = bmcc.GaussianMixture(n=1000,
                               k=4,
                               d=3,
                               r=0.7,
                               alpha=40,
                               df=3,
                               symmetric=False,
                               shuffle=False)

# Create mixture models
model_mfm = bmcc.GibbsMixtureModel(
    data=dataset.data,
    component_model=bmcc.NormalWishart(df=3),
    mixture_model=bmcc.MFM(gamma=1, prior=lambda k: poisson.logpmf(k, 4)),
    assignments=np.zeros(1000).astype(np.uint16),
    thinning=5)
model_dpm = bmcc.GibbsMixtureModel(
    data=dataset.data,
    component_model=bmcc.NormalWishart(df=3),
    mixture_model=bmcc.DPM(alpha=1, use_eb=True),
    assignments=np.zeros(1000).astype(np.uint16),
    thinning=5)

# Run Iterations
print("MFM:")
for i in tqdm(range(5000)):
    model_mfm.iter()
print("DPM:")
for i in tqdm(range(5000)):