Ejemplo n.º 1
0
def updateThetaAndThetaRem(
        SS=None, K=None, NodeStateCount=None, rho=None,
        alpha=1.0, gamma=10.0):
    ''' Update parameters theta to maximize objective given suff stats.

    Returns
    ---------
    theta : 2D array, nNodes x K
    thetaRem : scalar
    '''
    if K is None:
        K = SS.K
    if NodeStateCount is None:
        NodeStateCount = SS.NodeStateCount
    nNodes = NodeStateCount.shape[0]
    if rho is None or rho.size != K:
        rho = OptimizerRhoOmegaBetter.make_initrho(K, nNodes, gamma)

    # Calculate E_q[alpha * Beta_l] for l = 1, ..., K+1
    Ebeta = StickBreakUtil.rho2beta(rho, returnSize='K')
    alphaEbeta = alpha * Ebeta
    alphaEbetaRem = alpha * (1- Ebeta.sum())

    theta = alphaEbeta + NodeStateCount
    thetaRem = alphaEbetaRem
    return theta, thetaRem
Ejemplo n.º 2
0
    def _calcTheta(self, SS):
        ''' Update parameters theta to maximize objective given suff stats.

        Returns
        ---------
        transTheta : 2D array, size K x K+1
        startTheta : 1D array, size K
        '''
        K = SS.K
        if not hasattr(self, 'rho') or self.rho.size != K:
            self.rho = OptimizerRhoOmega.create_initrho(K)

        # Calculate E_q[alpha * Beta_l] for l = 1, ..., K+1
        Ebeta = StickBreakUtil.rho2beta(self.rho)
        alphaEBeta = self.transAlpha * Ebeta

        # transTheta_kl = M_kl + E_q[alpha * Beta_l] + kappa * 1_{k==l}
        transTheta = np.zeros((K, K + 1))
        transTheta += alphaEBeta[np.newaxis, :]
        transTheta[:K, :K] += SS.TransStateCount + self.kappa * np.eye(self.K)

        # startTheta_k = r_1k + E_q[alpha * Beta_l] (where r_1,>K = 0)
        startTheta = self.startAlpha * Ebeta
        startTheta[:K] += SS.StartStateCount
        return transTheta, startTheta
Ejemplo n.º 3
0
    def calcHardMergeGap(self, SS, kA, kB):
        ''' Calculate scalar improvement in ELBO for hard merge of comps kA, kB

        Does *not* include any entropy.

        Returns
        ---------
        L : scalar
        '''
        m_K = SS.K - 1
        m_SS = SuffStatBag(K=SS.K, D=0)
        m_SS.setField('StartStateCount', SS.StartStateCount.copy(), dims='K')
        m_SS.setField('TransStateCount',
                      SS.TransStateCount.copy(),
                      dims=('K', 'K'))
        m_SS.mergeComps(kA, kB)

        # Create candidate beta vector
        m_beta = StickBreakUtil.rho2beta(self.rho)
        m_beta[kA] += m_beta[kB]
        m_beta = np.delete(m_beta, kB, axis=0)

        # Create candidate rho and omega vectors
        m_rho = StickBreakUtil.beta2rho(m_beta, m_K)
        m_omega = np.delete(self.omega, kB)

        # Create candidate startTheta
        m_startTheta = self.startAlpha * m_beta.copy()
        m_startTheta[:m_K] += m_SS.StartStateCount

        # Create candidate transTheta
        m_transTheta = self.alpha * np.tile(m_beta, (m_K, 1))
        if self.kappa > 0:
            m_transTheta[:, :m_K] += self.kappa * np.eye(m_K)
        m_transTheta[:, :m_K] += m_SS.TransStateCount

        # Evaluate objective func. for both candidate and current model
        Lcur = calcELBO_LinearTerms(SS=SS,
                                    rho=self.rho,
                                    omega=self.omega,
                                    startTheta=self.startTheta,
                                    transTheta=self.transTheta,
                                    alpha=self.alpha,
                                    startAlpha=self.startAlpha,
                                    gamma=self.gamma,
                                    kappa=self.kappa)

        Lprop = calcELBO_LinearTerms(SS=m_SS,
                                     rho=m_rho,
                                     omega=m_omega,
                                     startTheta=m_startTheta,
                                     transTheta=m_transTheta,
                                     alpha=self.alpha,
                                     startAlpha=self.startAlpha,
                                     gamma=self.gamma,
                                     kappa=self.kappa)

        # Note: This gap relies on fact that all nonlinear terms are entropies,
        return Lprop - Lcur
    def L_slack(self, SS):
        ''' Compute slack term of the allocation objective function.

        Returns
        -------
        L : scalar float
        '''
        ElogPi, ElogPiRem = self.E_logPi(returnRem=1)
        Ebeta = StickBreakUtil.rho2beta(self.rho, returnSize='K')
        Q = SS.NodeStateCount + self.alpha * Ebeta - self.theta
        Lslack = np.sum(Q * ElogPi)

        alphaEbetaRem = self.alpha * (1.0 - Ebeta.sum())
        LslackRem = np.sum((alphaEbetaRem - self.thetaRem) * ElogPiRem)
        return Lslack + LslackRem