Ejemplo n.º 1
0
def getHeuristicFor(board):
    position_x, position_y = board.getCurrentPositions()[0]
    number = board.getCurrentUnitsNumber()[0]

    max_heuristic = 0
    for position in board.humansPos:
        if (number >= board.humansPos[position]):
            heuristic = board.humansPos[position] / (
                max(np.abs(position_x - position[0]),
                    np.abs(position_y - position[1])) + 1)
            max_heuristic = max(max_heuristic, heuristic)

    #closest distance from ennemy + current_unit
    #print("heuristic value", max_heuristic + number)
    return max_heuristic + number
Ejemplo n.º 2
0
def getSmartAvailableMoves(board, size, split=False):
        '''
            Orders the positions we can move to in a list, where the first one has the highest score 
            It should be explored first during the Tree Search 
        '''
        originalPositions = board.getAvailableMoves(split)
        size = min(size, len(originalPositions))
        scoreDict = {}
        # evaluate the score for each position
        for unit in board.getCurrentUnitsNumber():
            for position in originalPositions:
                scoreDict[tuple(position)] = getAvailableMovesScore(board, position, unit)
        # return only the n best positions
        sortedDict = sorted(scoreDict, key = scoreDict.get, reverse = True)
        sortedList = list(map(list, sortedDict))[:size]
        return sortedList
Ejemplo n.º 3
0
def getHeuristic(board):
    #print('Board :', board.getBoard())
    our_unit_nb = board.getCurrentUnitsNumber()[0]

    humans_pos = np.array(list(board.humansPos.keys()), dtype=(int, int))
    humans_nb = np.array(list(board.humansPos.values()), dtype=int)

    #filter human position where we are not at least equal to them in number
    humans_pos = humans_pos[humans_nb <= our_unit_nb]
    humans_nb = humans_nb[humans_nb <= our_unit_nb]

    if len(humans_pos) > 0:
        positions_tile = np.tile(board.getCurrentPositions()[0],
                                 (len(humans_pos), 1))
        #compute the distance with humans
        #print("positions_tile", positions_tile)
        #print("humans_pos", humans_pos)
        max_dist = np.max(np.abs(positions_tile - humans_pos), axis=1)
        max_heuristic_humans = humans_nb / (max_dist + 1)
    else:
        max_heuristic_humans = [0]

    #our heuristic is human heuristic + our current unit_nb
    return max(max_heuristic_humans) + our_unit_nb
Ejemplo n.º 4
0
def getSmarterHeuristic(board, heuristicHistory, Smart_score):
    """
    Heuristic function 
    """
    hash = board.hash()
    if (hash in heuristicHistory):
        heuristic = heuristicHistory[hash]

    else:
        score = 0
        # Store essential information
        our_position, our_unit_nb = board.getBiggestPosition()
        units_nb = board.getCurrentUnitsNumber()
        total_units_nb = board.getCurrentUnitsNumberSum()
        our_pos = board.getCurrentPositions()

        humans_pos = np.array(list(board.humansPos.keys()), dtype=(int, int))
        humans_nb = np.array(list(board.humansPos.values()), dtype=int)
        total_humans_nb = np.sum(humans_nb)

        enemy_pos = np.array(board.getOpponentCurrentPositions(),
                             dtype=(int, int))
        enemy_nb = np.array(board.getOpponentUnitsNumber(), dtype=int)
        opponents_unit_nb = board.getOpponentUnitsNumberSum()

        distanceEnemies = [
            np.max(np.abs(np.subtract(list(enemy), our_position)))
            for enemy in enemy_pos
        ]
        # distanceHumans = [np.max(np.abs(np.subtract(list(human_loc), our_position)))
        """
        # Consider the case where there is no human left 
        if total_humans_nb == 0: 
            for dist, enemy_unit in zip(distanceEnemies, enemy_nb):
                if (enemy_unit < 1.5 * total_units_nb): score += 10000 / ((dist+1)*(enemy_unit))
                else: 
                    score -= 10 /(dist+1) 
            heuristic = score
            heuristicHistory[hash] = heuristic
            # consider distance of ennemy with our units --> if = 1, bad.

        else: 
        """
        # Consider eatable humans and proximity - does not deal with split yet
        potential_units = total_units_nb
        for humans_loc, human_unit in zip(humans_pos, humans_nb):
            dist = np.max(np.abs(np.subtract(humans_loc, our_position)))
            if (human_unit > potential_units): p = 0
            elif (total_units_nb >= human_unit): p = 1
            else: p = 2 / 3

            distEH = min([
                np.max(np.abs(np.subtract(list(enemy), humans_loc)))
                for enemy in enemy_pos
            ])
            if ((distEH) / (dist + 1) <= 1 / 4): q = 0.5
            elif (0.9 < (distEH + 1) / (dist + 1)
                  and (distEH + 1) / (dist + 1) < 1.2):
                q = 1.2
            else:
                q = 1

            score += p * q * human_unit / (dist + 1)
            potential_units += human_unit

        # Consider ennemies
        for dist, enemy_unit in zip(distanceEnemies, enemy_nb):
            if (enemy_unit >= 1.5 * total_units_nb):
                score -= (enemy_unit - total_units_nb) / (dist + 1)  # avoid
            elif (total_units_nb > 1.5 * enemy_unit):
                score += (total_units_nb - enemy_unit) / (dist + 1
                                                          )  # go towards
            else:
                score += 1 / (dist + 1)  # if no humans left, go attack
        # consider distance of ennemy with our units --> if = 1, bad.

        # Compute heuristic
        greedy = 4  # how greedy we want our bot to be, meaning how much does it values the units gained within tree search
        # score is weighted by 1, Smart_score by 3.5.
        heuristic = score + Smart_score - greedy * opponents_unit_nb + greedy * total_units_nb
        heuristicHistory[hash] = heuristic
    return heuristic