Ejemplo n.º 1
0
# =============================================================================
# def update_title(attrname, old, new):
#     plot.title.text = text.value
#
# text.on_change('value', update_title)
# =============================================================================
# =============================================================================
# group=gdf.groupby('county')
# sample=group.agg({'cofiltered':'mean'}).reset_index(drop=False)
# lnd_bor.join(sample.set_index('county'),on='name')
#
# pd.DataFrame(lnd_bor.name).join(sample.set_index('county'),on='name')
# =============================================================================


def update_data(attrname, old, new):

    co_now = lnd_bor[['name', 'geometry', Date.value]]
    co_now = co_now.rename(columns={Date.value: 'Ave_CO'})
    gjson = co_now.to_json()
    source.geojson = gjson


Date.on_change('value', update_data)

# Set up layouts and add to document
inputs = widgetbox(Date)

curdoc().add_root(row(inputs, plot))
curdoc().title = "London"
Ejemplo n.º 2
0
                                start=VARS['global_start'],
                                step=1,
                                value=(
                                    VARS['time_range'][0],
                                    VARS['time_range'][1],
                                ))
single_day_selector = DateSlider(
    title="Select Day",
    end=VARS['global_end'],
    start=VARS['global_start'],
    step=1,
    value=VARS['selected_day'],
)

date_selector.on_change('value', update_time_range)
single_day_selector.on_change('value', update_highlighted_day)

##################################################################
# Bokeh Plots
##################################################################
TOOLS = "pan,wheel_zoom,box_select,lasso_select,reset"

##########
# Stage Time Series
##########

hydrograph = figure(plot_width=1000,
                    plot_height=350,
                    tools=TOOLS + ',box_zoom,hover',
                    toolbar_location="above",
                    toolbar_sticky=False,
Ejemplo n.º 3
0
    return {
        'selected': ColumnDataSource(data=selected),
        'unselected': ColumnDataSource(unselected)
    }


def update_plot():
    src = get_datasets(df)
    selected_data_source.data.update(src['selected'].data)
    unselected_data_source.data.update(src['unselected'].data)


df0 = pd.read_pickle(join(dirname(__file__), 'data', 'tremors.pkl'))
df = df0.sample(frac=0.1)

date_slider = DateSlider(start=df['date'].min(),
                         end=df['date'].max(),
                         step=100,
                         value=df['date'].min())
date_slider.on_change('value', lambda attr, old, new: update_plot())

slider_box = widgetbox(children=[date_slider], width=600)

datasets_init = get_datasets(df)  # get bokeh ColumnDataSource
selected_data_source = datasets_init['selected']
unselected_data_source = datasets_init['unselected']
p = make_plot(selected_data_source, unselected_data_source)

layout = layout(children=[[p], [slider_box]], sizing_mode='fixed')

curdoc().add_root(layout)
Ejemplo n.º 4
0
                                    1000.0)  #date_slider.value   #slider.value
    #geosource = GeoJSONDataSource(geojson = json_data(day))
    new_data = json_data(day)
    geosource.geojson = new_data
    p.title.text = 'CovIndex, {:%d %b %Y}'.format(day)  #'CovIndex, %d' %day


date_slider = DateSlider(
    title="Date Range: ",
    start=date(2020, 3, 25),
    end=date(2020, 5, 14),
    value=date(2020, 3, 25),
    step=86400000
)  # https://discourse.bokeh.org/t/bokeh-dateslider-still-broken/2466

date_slider.on_change('value', update_plot)

# Make a column layout of widgetbox(slider) and plot, and add it to the current document
layout = column(p, column(date_slider))
curdoc().add_root(layout)

#Display plot inline in Jupyter notebook
output_notebook()

#Display plot
show(layout)

# Activate callback function with Bokeh Server
# (run the command below on Anaconda Prompt, from the corect directory)
# (it will open a new browser page)
# bokeh serve --show 02806_DateSliderMap.py
Ejemplo n.º 5
0
def scatter(df):
    #global df1
    
    def make_dataset(df):
        return ColumnDataSource(df)
    
    def style(p):
        # Title 
        p.title.align = 'center'
        p.title.text_font_size = '20pt'
        p.title.text_font = 'serif'

        # Axis titles
        p.xaxis.axis_label_text_font_size = '14pt'
        p.xaxis.axis_label_text_font_style = 'bold'
        p.yaxis.axis_label_text_font_size = '14pt'
        p.yaxis.axis_label_text_font_style = 'bold'

        # Tick labels
        p.xaxis.major_label_text_font_size = '12pt'
        p.yaxis.major_label_text_font_size = '12pt'

        return p

    def make_plot(src):
        # Blank plot with correct labels
        p = figure(plot_width = 1000, plot_height = 600, title = 'Confirmed Cases vs Recovered Cases (Size of glyph = Confirmed Death)',
                  x_axis_label = 'Confirmed Cases', y_axis_label = 'Recovered Cases')
        
        
        
        p.circle('confirmed_cases', 'recovered_cases', source=src, fill_alpha=0.7, size='death1',
            hover_fill_color = 'purple', hover_fill_alpha = 0.7, color='color', legend_field = 'continent')

        hover = HoverTool(tooltips=[('As at', '@Date{%F}'),
                                    ('Country', '@Country'),
                                    ('Confirmed', '@confirm'),
                                    ('Recovered', '@recovered'),
                                    ('Death', '@death')],
                         formatters={'@Date': 'datetime'})

        p.add_tools(hover)
        
        p.legend.location = "center_right"
        
        p.legend.click_policy = 'hide'

        # Styling
        p = style(p)

        return p
    
    # Callback function
    def update(attr, old, new):
       
        continent_to_plot = [continent_selection.labels[i] for i in 
                             continent_selection.active]
        
        df1 = df.set_index(['continent'])
        df1 = df1.loc[continent_to_plot]
        
        a = day_slider.value_as_date
        date = pd.to_datetime(a)

        d = df1[df1['Date'] == date]
        new_src = make_dataset(d)


        src.data.update(new_src.data)
    
    def animate_update():
        day = day_slider.value_as_date + timedelta(days=1)
        
        if day>df['Date'].max():
            day = df['Date'].min()
        day_slider.value = day

    def animate():
        global callback_id
        if button.label == '► Play':
            button.label = '❚❚ Pause'
            callback_id = curdoc().add_periodic_callback(animate_update, 200)
        else:
            button.label = '► Play'
            curdoc().remove_periodic_callback(callback_id)
            
    callback_id = None
    
    button = Button(label='► Play', width=60)
    button.on_click(animate)

        
    value = list(df['continent'].unique())
    continent_selection = CheckboxGroup(labels=value, active = [0, 1])
    continent_selection.on_change('active', update)
    
    day_slider = DateSlider(title="Date: ", start=df['Date'].min(), end=df['Date'].max(),
                                   value=df['Date'].max(), step=1)
    
    day_slider.on_change('value', update)
    
    controls = row(continent_selection, day_slider, button)
    
    initial = [continent_selection.labels[i] for i in continent_selection.active]
    df1 = df.set_index(['continent'])
    df1 = df1.loc[initial]
    
    dat = df1['Date'].max()
    d = df1[df1['Date'] == dat]
    src = make_dataset(d)
    
    p = make_plot(src)
    
    layout = column([controls, p])
    
    tab = Panel(child = layout, title = 'Progression')
    
    return tab
Ejemplo n.º 6
0
def third_tab_create(filterData):

    #def arima(date = dummy_date, house = dummy_house , data = dummy_data,trainDays = dummy_trainDays):
    def arima(date, state, data, trainDays):

        houseData = filterData.groupby(
            filterData[filterData['state'] == state]['time']).sum()
        houseData['time'] = houseData.index
        #houseData['time'] = pd.to_datetime(houseData['time'])
        #houseData = houseData[['car1','grid','solar','time','load']]
        houseData = houseData[['time', data]]

        #houseData = filterData[filterData['dataid'] == house][['time',data]]
        #houseData = houseData.sort_values('time', ascending = True)
        houseData = houseData.sort_index()
        #houseData.index = houseData['time']
        startDate = pd.to_datetime(date) + pd.DateOffset(days=-trainDays)
        endDate = pd.to_datetime(date) + pd.DateOffset(days=1)
        daterange = [startDate, endDate]
        houseData = houseData.loc[daterange[0]:daterange[1], :]
        houseData[data] = houseData[data] * 60 * 15 / 3600  # kWh
        #houseData[data] = ( houseData[data] > .01 ) * houseData[data]
        weekdays = houseData[houseData.index.dayofweek < 5]
        weekends = houseData[houseData.index.dayofweek > 4]
        weekdayProfile = weekdays.groupby(weekdays['time'].dt.time).mean()
        weekendProfile = weekends.groupby(weekends['time'].dt.time).mean()
        houseData['detrend'] = houseData[data]

        for i in range(0, len(houseData)):
            if houseData['time'][i].dayofweek > 4:
                houseData['detrend'][i] = houseData['detrend'][
                    i] - weekendProfile[weekendProfile.index ==
                                        houseData['time'].dt.time[i]][data]
            else:
                houseData['detrend'][i] = houseData['detrend'][
                    i] - weekdayProfile[weekdayProfile.index ==
                                        houseData['time'].dt.time[i]][data]

        trainData = houseData['detrend']

        stepwise_model = auto_arima(trainData,
                                    start_p=1,
                                    start_q=1,
                                    max_p=3,
                                    max_q=3,
                                    m=7,
                                    start_P=0,
                                    seasonal=True,
                                    d=1,
                                    D=1,
                                    trace=True,
                                    error_action='ignore',
                                    suppress_warnings=True,
                                    stepwise=True)

        train = houseData[data].loc[startDate:date]
        test = pd.DataFrame(data=houseData.loc[date:endDate])
        test = test.drop(columns='detrend')
        future_forecast = stepwise_model.predict(n_periods=len(test))

        test['arima'] = future_forecast

        if pd.to_datetime(date).dayofweek > 4:
            aveProfile = weekendProfile
        else:
            aveProfile = weekdayProfile

        for i in range(0, len(test)):
            test['arima'][i] = test['arima'][i] + aveProfile[
                aveProfile.index == test['time'].dt.time[i]][data]

        test['error'] = abs(test[data] - test['arima'])
        #test['error'] = ( test['error'] > .03 ) * test['error']
        test = test.rename(columns={data: 'data'})
        test = test.drop(columns='time')

        #mape = 100 * sum( abs( test['error'] / test['data'] ) ) / len (test)
        mape = 100 * sum(abs(test['error'] / test['data'].max())) / len(test)

        print(stepwise_model.summary())

        return ColumnDataSource(test), mape

    def plot1_plot(src, mape):
        plot1 = figure(
            title='PV Generation + Battery(Discharge) forecasting of NY',
            x_axis_label='Time',
            y_axis_label='Generation [kWh]',
            x_axis_type="datetime")
        a = plot1.line('time', 'data', source=src, color='blue')
        b = plot1.line('time', 'arima', source=src, color='green')
        c = plot1.line('time', 'error', source=src, color='red')
        plot1.plot_width = 1300

        legend = Legend(items=[
            LegendItem(label="Raw Data", renderers=[a], index=0),
            LegendItem(label="Forecast", renderers=[b], index=1),
            LegendItem(label="Error", renderers=[c], index=2),
        ])

        plot1.add_layout(legend)

        plot1.legend.title = f'Abs Error = {round(mape1,3)}%'

        return plot1

    def update(attr, old, new):

        button.update(button_type='warning', label='Loading, please wait')

        def calculate():
            global home_to_plot, state_dict

            data_selector = data_type_selector.labels[
                data_type_selector.active]

            if data_selector == 'Net Load':
                data_to_plot = 'grid'
                plot1.yaxis.axis_label = 'Net Load [kWh]'

            if data_selector == 'Load + Battery(Charging)':
                data_to_plot = 'Load_+_Battery(Charging)'
                plot1.yaxis.axis_label = 'Load [kWh]'

            if data_selector == "Electric Vehicle Consumption":
                data_to_plot = 'car1'
                plot1.yaxis.axis_label = 'Consumption [kWh]'

            if data_selector == "PV Generation + Battery(Discharge)":
                data_to_plot = 'PV_+_Battery(Discharge)'
                plot1.yaxis.axis_label = 'Generation [kWh]'

            trainDays_to_plot = int(trainDays_input.value)

            new_home_to_plot = state_dict[community_selector.active]

            #new_home_to_plot = int(home_id_selector.value) ###

            plot1.title.text = f'{data_selector} forecasting of {new_home_to_plot} for date {date_slider.value}'

            if new_home_to_plot != home_to_plot:
                startDate = filterData[
                    filterData['state'] ==
                    new_home_to_plot]['time'].iloc[0].date()  ##change
                endDate = filterData[filterData['state'] ==
                                     new_home_to_plot]['time'].iloc[-1].date()
                middle = startDate + (endDate - startDate) / 1.5

                date_slider.start = startDate
                date_slider.end = endDate
                date_slider.value = middle
                date_to_plot = str(middle)

                print(startDate, endDate, middle)

            #daterange_raw = list(date_slider.value_as_datetime)
            #daterange_to_plot = [daterange_raw[0].strftime("%Y-%m-%d"), daterange_raw[1].strftime("%Y-%m-%d")]

            date_to_plot = date_slider.value

            new_src1, new_mape1 = arima(date=date_to_plot,
                                        state=new_home_to_plot,
                                        data=data_to_plot,
                                        trainDays=trainDays_to_plot)
            src1.data.update(new_src1.data)

            plot1.legend.title = f'Abs Error = {round(new_mape1,3)}%'

            button.update(button_type='success', label='Done')

            home_to_plot = new_home_to_plot

        curdoc().add_next_tick_callback(calculate)

    ## Initialize src and plot
    src1, mape1 = arima(date='2019-07-20',
                        state='NY',
                        data='PV_+_Battery(Discharge)',
                        trainDays=2)
    plot1 = plot1_plot(src1, mape1)

    ## Date Slider
    date_slider = DateSlider(title="Date: ",
                             start=date(2019, 5, 1),
                             end=date(2019, 8, 20),
                             value=date(2019, 7, 20),
                             step=1,
                             callback_policy='mouseup',
                             width=1300)
    date_slider.on_change("value_throttled", update)

    ## Text input
    trainDays_input = TextInput(value='2',
                                title='Training Days',
                                max_width=200,
                                max_height=50)
    trainDays_input.on_change('value', update)

    ## Data Options
    data_type_selector = RadioGroup(labels=[
        "PV Generation + Battery(Discharge)", "Load + Battery(Charging)",
        "Net Load", "Electric Vehicle Consumption"
    ],
                                    active=0)
    data_type_selector.on_change('active', update)

    ## Loading Status

    button = Button(label="Done", button_type="success")

    ## Home Selector
    #home_ids_available = np.unique(filterData['dataid'])

    #home_ids_available = list(map(str, home_ids_available))
    #home_id_selector = Dropdown(label="Home ID", button_type="warning", menu=home_ids_available, value="5679", max_width = 200)
    #home_id_selector.on_change('value',update)

    ## Agg house selection
    community_selector = RadioGroup(labels=list(np.unique(
        filterData['state'])),
                                    active=6,
                                    max_width=200)

    community_selector.on_change('active', update)

    row1 = row(
        plot1,
        column(data_type_selector,
               trainDays_input,
               community_selector,
               button,
               sizing_mode="scale_width"))
    row2 = row(date_slider)

    ## Layout
    layout = column(row1, row2)

    tab = Panel(child=layout, title='Forecasting')

    return tab
Ejemplo n.º 7
0
class ForecastByGeography():
    """Shows US map and electoral college votes by state."""

    # %%
    def __init__(self, controller):
        """Initialize object.

        First part of two-part initialization.
        Put initialization code here that's very unlikely to fail.
        """
        self.controller = controller
        self.state = None
        self.state_src = None

        # State maop of the US.
        self.stateusmap = figure(
            title="""Electoral college votes by time and geography""",
            x_axis_location=None,
            y_axis_location=None,
            x_axis_type="""linear""",
            sizing_mode="""stretch_both""")
        self.stateusmap.xgrid.visible = False
        self.stateusmap.ygrid.visible = False

        # The date for charting.
        self.choosethedatefordisplay = DateSlider(
            title="""Choose the date for display""",
            start="""2018-11-13T20:20:39+00:00""",
            end="""2025-11-13T20:20:39+00:00""",
            step=24 * 60 * 60 * 1000,
            value="""2018-11-13T20:20:39+00:00""",
            sizing_mode="stretch_width")

        # Layout the widgets
        row1 = row(children=[
            Spacer(width=10), self.choosethedatefordisplay,
            Spacer(width=10)
        ],
                   sizing_mode='stretch_width')
        self.layout = column(children=[
            self.stateusmap, row1,
            Spacer(height=75, sizing_mode='scale_width')
        ],
                             sizing_mode='stretch_both')
        self.panel = Panel(child=self.layout, title='Forecast by geography')

    # %%
    def setup(self):
        """Set up object.

        Second part of two-part initialization.
        Place initialization code here that's more likely to fail.
        """
        # Load the files containing the state outlines and the Alaska/Hawaii
        # dividing lines
        _folder = os.path.dirname(os.path.realpath(__file__))
        _state_j = json.load(
            open(os.path.join(_folder, MAP_FOLDER, "state.json"), 'r'))
        _state = pd.DataFrame(_state_j['data'])
        _state = _state.sort_values('State abbreviation')
        _state['color'] = random.choices(brewer['RdBu'][11], k=_state.shape[0])
        _state['Democratic percentage'] = np.random.rand(_state.shape[0])
        _state['Republican percentage'] = np.random.rand(_state.shape[0])

        _frame_j = json.load(
            open(os.path.join(_folder, MAP_FOLDER, "frame.json"), 'r'))
        # Set up the sources
        self.state_src = ColumnDataSource(_state)
        frame_src = ColumnDataSource(
            data=dict(x=_frame_j['data']['x'], y=_frame_j['data']['y']))
        # Draw the states and the lines
        states = self.stateusmap.patches(xs='x',
                                         ys='y',
                                         source=self.state_src,
                                         fill_alpha=0.5,
                                         fill_color='color',
                                         line_color="gray",
                                         line_width=0.5)
        # The frame that separates AK, HI from the rest of the US
        self.stateusmap.multi_line(xs='x',
                                   ys='y',
                                   source=frame_src,
                                   line_color="gray",
                                   line_width=1.0)
        # Now set up the hover tool - so the state name is given
        hover = HoverTool(point_policy="follow_mouse",
                          renderers=[states],
                          tooltips=[
                              ("State name", "@{State name}"),
                              ("State abbreviation", "@{State abbreviation}"),
                              ("Democratic",
                               "@{Democratic percentage}{%0.1f}"),
                              ("Republican", "@{Republican percentage}{%0.1f}")
                          ])
        self.stateusmap.add_tools(hover)

        # Setup the callbacks.
        self.choosethedatefordisplay.on_change(
            "value", self.callback_choosethedatefordisplay)

    # %%
    def update(self, state):
        """Update view object."""
        # Make a copy of the state data and change the copy
        self.state = state.copy()
        self.state['color index'] = self.state['Spread D-R'] * 100
        self.state['color index'] = pd.cut(
            self.state['color index'],
            [-100, -10, -5, -2, -1, -0.5, 0.5, 1, 2, 5, 10, 100],
            labels=[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
        self.state['color'] =\
            self.state['color index'].map(
                {k: v for k, v in enumerate(brewer['RdBu'][11])})

        self.choosethedatefordisplay.start = self.state['Date'].min()
        self.choosethedatefordisplay.value = self.state['Date'].max()
        self.choosethedatefordisplay.end = self.state['Date'].max()

        self._update_chart(self.choosethedatefordisplay.value_as_datetime)

    # %%
    def _update_chart(self, date):
        """Update chart based on date."""
        _slice = self.state[self.state['Date'] == date]

        self.state_src.data['color'] = \
            _slice[['State abbreviation',
                    'color']].sort_values(
                        'State abbreviation')['color'].to_list()
        self.state_src.data['Democratic percentage'] = \
            _slice[['State abbreviation',
                    'Democratic proportion']].sort_values(
                        'State abbreviation')[
                            'Democratic proportion'].to_list()
        self.state_src.data['Republican percentage'] = \
            _slice[['State abbreviation',
                    'Republican proportion']].sort_values(
                        'State abbreviation')[
                            'Republican proportion'].to_list()

    # %%
    def callback_choosethedatefordisplay(self, attrname, old, new):
        """Execute callback method for self.choosethedatefordisplay."""
        # pylint: disable=W0613
        self._update_chart(self.choosethedatefordisplay.value_as_datetime)