Ejemplo n.º 1
0
 def convolved_table_list(self, tab1, tab2, tab3):
     f_tab1a = bootstrap.ConvolvedBlockTable(tab1)
     f_tab1s = bootstrap.ConvolvedBlockTable(tab1, symmetric=True)
     f_tab2a = bootstrap.ConvolvedBlockTable(tab2)
     f_tab2s = bootstrap.ConvolvedBlockTable(tab2, symmetric=True)
     f_tab3 = bootstrap.ConvolvedBlockTable(tab3)
     return [f_tab1a, f_tab1s, f_tab2a, f_tab2s, f_tab3]
Ejemplo n.º 2
0
    def determine_grid(self):
        #key = [self.inputs['dim'], self.inputs['kmax'], self.inputs['lmax'], self.inputs['mmax'], self.inputs['nmax']]
        key = list(self.inputs.values())
        tab1 = bootstrap.ConformalBlockTable(*key)
        tab2 = bootstrap.ConvolvedBlockTable(tab1)

        # Instantiate a Grid object with appropriate input values.
        grid = Grid(*key, [], [])

        for sig in self.sig_values:
            for eps in self.eps_values:

                sdp = bootstrap.SDP(sig, tab2)
                sdp.set_bound(0, float(self.gap))
                sdp.add_point(0, eps)
                result = sdp.iterate()

                if result:
                    grid.allowed_points.append((sig, eps))
                else:
                    grid.disallowed_points.append((sig, eps))

        # Now append this grid object to the IsingGap table.
        # Note we will need to implement a look up table to retrieve desired data.
        self.table.append(grid)
Ejemplo n.º 3
0
def iterate_k_max(k_range):
    bootstrap.cutoff = 1e-10
    dim = 3
    l_max = 15
    n_max = 4
    m_max = 2
    for k in k_range:
        tab1 = bootstrap.ConformalBlockTable(dim, k_max, l_max, m_max, n_max)
        tab2 = bootstrap.ConvolvedBlockTable(tab1)
        plot_grid(dim, tab2, sig_set, eps_set)
Ejemplo n.º 4
0
 def iterate_parameter(self, par, par_range):
     if type(par_range)==int:
         par_range=[par_range]
     start_time=time.time()
     start_cpu=time.clock()
     for x in par_range:
         self.inputs[par]=x
         #Might make more sense to move tab1 and tab2 calculation to plot_grid()?
         tab1=bootstrap.ConformalBlockTable(self.inputs['dim'],self.inputs['kmax'],self.inputs['lmax'],self.inputs['mmax'],self.inputs['nmax'])
         tab2=bootstrap.ConvolvedBlockTable(tab1)
         self.plot_grid(par,x,tab2)
     end_time=time.time()
     end_cpu=time.clock()
     run_time=time.strftime("%H:%M:%S",time.gmtime(end_time-start_time))
     cpu_time=time.strftime("%H:%M:%S",time.gmtime(end_cpu-start_cpu))
     print("Run time "+run_time, "CPU time "+cpu_time)
Ejemplo n.º 5
0
	def determine_grid(self, key):
		#if self.get_grid_index(key) != -1:
		start_time=time.time()
		start_cpu=time.clock()
		tab1 = bootstrap.ConformalBlockTable(self.dim, *key)
		tab2 = bootstrap.ConvolvedBlockTable(tab1)
		
		# Instantiate a Grid object with appropriate input values.
		# grid=Grid(*key, [], [])
		grid = Grid(*(key + [[], [], 0, 0]))
		
		for sig in self.sig_values:
			for eps in self.eps_values: 				
				sdp = bootstrap.SDP(sig, tab2)
				# SDPB will naturally try to parallelize across 4 cores / slots.
				# To prevent this, we set its 'maxThreads' option to 1.
				# See 'common.py' for the list of SDPB option strings, as well as their default values.
				sdp.set_option("maxThreads", 1)
				sdp.set_bound(0, float(self.gap))
				sdp.add_point(0, eps)
				result = sdp.iterate()				
				if result:
					grid.allowed_points.append((sig, eps))
				else:
					grid.disallowed_points.append((sig, eps))
					
		# Now append this grid object to the IsingGap table.
		# Note we will need to implement a look up table to retrieve desired data.
		end_time=time.time()
		end_cpu=time.clock()
		run_time=end_time-start_time
		cpu_time=end_cpu-start_cpu
		run_time = datetime.timedelta(seconds = int(end_time - start_time))
		cpu_time = datetime.timedelta(seconds = int(end_cpu - start_cpu))

		grid.run_time = run_time
		grid.cpu_time = cpu_time
		self.table.append(grid)
		self.save_grid(grid, self.name)
Ejemplo n.º 6
0
bootstrap.cutoff = 0
reference_sdp = None
for i in range(len(row[0])):
    sig = row[0][i]
    eps = row[1][i]

    global start_time
    start_time = time.time()
    global start_cpu
    start_cpu = time.clock()
    g_tab1 = bootstrap.ConformalBlockTable(3, *key)
    g_tab2 = bootstrap.ConformalBlockTable(
        3, *(key + [eps - sig, sig - eps, "odd_spins = True"]))
    g_tab3 = bootstrap.ConformalBlockTable(
        3, *(key + [sig - eps, sig - eps, "odd_spins = True"]))
    f_tab1a = bootstrap.ConvolvedBlockTable(g_tab1)
    f_tab1s = bootstrap.ConvolvedBlockTable(g_tab1, symmetric=True)
    f_tab2a = bootstrap.ConvolvedBlockTable(g_tab2)
    f_tab2s = bootstrap.ConvolvedBlockTable(g_tab2, symmetric=True)
    f_tab3 = bootstrap.ConvolvedBlockTable(g_tab3)
    tab_list = [f_tab1a, f_tab1s, f_tab2a, f_tab2s, f_tab3]
    global now
    global now_clock
    global CB_time
    global CB_cpu
    now = time.time()
    now_clock = time.clock()
    CB_time = datetime.timedelta(seconds=int(now - start_time))
    CB_cpu = datetime.timedelta(seconds=int(now_clock - start_cpu))
    print(
        "The calculation of the required conformal blocks has successfully completed."
Ejemplo n.º 7
0
l_max = 15
n_max = 4
m_max = 2


def find_bounds(table1, table2, lower, upper, tol, channel):
    dim_phi = 0.5
    x = []
    y = []
    while dim_phi < 0.6:
        sdp = bootstrap.SDP(dim_phi, table2)
        result = sdp.bisect(lower, upper, tol, channel)
        x.append(dim_phi)
        y.append(result)
        dim_phi += 0.002
    plt.plot(x, y)


tab1 = bootstrap.ConformalBlockTable(dim, k_max, l_max, m_max, n_max)
tab2 = bootstrap.ConvolvedBlockTable(tab1)

l = 0.9
u = 1.7
t = 0.01
c = 0

find_bounds(tab1, tab2, l, u, t, c)

plt.xlabel('$\Delta_{\sigma}$')
plt.ylabel('$\Delta_{\epsilon}$')
plt.show()
Ejemplo n.º 8
0
 cprint("Finding basic bound at external dimension " + str(dim_phi) + "...")
 # Spatial dimension.
 dim = 3
 # Dictates the number of poles to keep and therefore the accuracy of a conformal block.
 k_max = 20
 # Says that conformal blocks for spin-0 up to and including spin-14 should be computed.
 l_max = 14
 # Conformal blocks are functions of (a, b) and as many derivatives of each should be kept for strong bounds.
 # This says to keep derivatives up to fourth order in b.
 n_max = 4
 # For a given n, this states how many a derivatives should be included beyond 2 * (n - n_max).
 m_max = 2
 # Generates the table.
 table1 = bootstrap.ConformalBlockTable(dim, k_max, l_max, m_max, n_max)
 # Computes the convolution.
 table2 = bootstrap.ConvolvedBlockTable(table1)
 # Sets up a semidefinite program that we can use to study this.
 sdp = bootstrap.SDP(dim_phi, table2)
 # We think it is perfectly find for all internal scalars coupling to our external one to have dimension above 0.7.
 lower = 0.7
 # Conversely, we think it is a problem for crossing symmetry if they all have dimension above 1.7.
 upper = 1.7
 # The boundary between these regions will be found within an error of 0.01.
 tol = 0.01
 # The 0.7 and 1.7 are our guesses for scalars, not some other type of operator.
 channel = 0
 # Calls SDPB to compute the bound.
 result = sdp.bisect(lower, upper, tol, channel)
 cprint(
     "If crossing symmetry and unitarity hold, the maximum gap we can have for Z2-even scalars is: "
     + str(result))
Ejemplo n.º 9
0
    def determine_row(self, key, row):
        # Will be called with a given row_lists[i]
        # Use generate_rows() method to build row_lists.
        # row = row_lists[row_index]
        reference_sdp = None
        blocks_initiated = False
        for i in range(len(row[0])):
            phi = eval_mpfr(row[0][i], bootstrap.prec)
            sing = eval_mpfr(row[1][i], bootstrap.prec)

            # phi_sing = eval_mpfr(phi - sing, bootstrap.prec)
            # sing_phi = eval_mpfr(sing - phi, bootstrap.prec)

            start = time.time()
            start_cpu = time.clock()

            if blocks_initiated == False:
                g_tab1 = bootstrap.ConformalBlockTable(
                    self.dim, *(key + [0, 0, "odd_spins = True"]))
                g_tab2 = bootstrap.ConformalBlockTable(
                    self.dim,
                    *(key + [phi - sing, phi - sing, "odd_spins = True"]))
                g_tab3 = bootstrap.ConformalBlockTable(
                    self.dim,
                    *(key + [sing - phi, phi - sing, "odd_spins = True"]))

                f_tab1a = bootstrap.ConvolvedBlockTable(g_tab1)
                f_tab1s = bootstrap.ConvolvedBlockTable(g_tab1, symmetric=True)
                f_tab2a = bootstrap.ConvolvedBlockTable(g_tab2)
                f_tab3a = bootstrap.ConvolvedBlockTable(g_tab3)
                f_tab3s = bootstrap.ConvolvedBlockTable(g_tab3, symmetric=True)

                tab_list = [f_tab1a, f_tab1s, f_tab2a, f_tab3a, f_tab3s]

                for tab in [g_tab1, g_tab2, g_tab3]:
                    # tab.dump("tab_" + str(tab.delta_12) + "_" + str(tab.delta_34))
                    del tab
                blocks_initiated = True

            max_dimension = 0
            for tab in tab_list:
                max_dimension = max(max_dimension, len(tab.table[0].vector))

            print("kmax should be around " + max_dimension.__str__() + ".")
            dimension = (5 * len(f_tab1a.table[0].vector)) + (
                2 * len(f_tab1s.table[0].vector))
            bootstrap.cb_end = time.time()
            bootstrap.cb_end_cpu = time.clock()
            cb_time = datetime.timedelta(seconds=int(bootstrap.cb_end - start))
            cb_cpu = datetime.timedelta(seconds=int(bootstrap.cb_end_cpu -
                                                    start_cpu))
            print(
                "The calculation of the required conformal blocks has successfully completed."
            )
            print("Time taken: " + str(cb_time))
            print("CPU_time: " + str(cb_cpu))

            if reference_sdp == None:
                sdp = bootstrap.SDP([phi, sing],
                                    tab_list,
                                    vector_types=self.info)
                reference_sdp = sdp
            else:
                sdp = bootstrap.SDP([phi, sing],
                                    tab_list,
                                    vector_types=self.info,
                                    prototype=reference_sdp)

            # We assume the continuum in both even vector and even singlet sectors begins at the dimension=3.
            sdp.set_bound([0, 0], self.dim)
            sdp.set_bound([0, 3], self.dim)

            # Except for the two lowest dimension scalar operators in each sector.
            sdp.add_point([0, 0], sing)
            sdp.add_point([0, 3], phi)

            sdp.set_option("maxThreads", 16)
            sdp.set_option("dualErrorThreshold", 1e-15)
            sdp.set_option("maxIterations", 1000)

            # Run the SDP to determine if the current operator spectrum is permissable.
            print("Testing point " + "(" + phi.__str__() + ", " +
                  sing.__str__() + ")" + " with " + dimension.__str__() +
                  " components.")
            result = sdp.iterate()
            end = time.time()
            end_cpu = time.clock()
            sdp_time = datetime.timedelta(seconds=int(end - bootstrap.xml_end))
            sdp_cpu = datetime.timedelta(seconds=int(end_cpu -
                                                     bootstrap.xml_end_cpu))
            run_time = datetime.timedelta(seconds=int(end - start))
            cpu_time = datetime.timedelta(seconds=int(end_cpu - start_cpu))

            print("The SDP has finished running.")
            print("Time taken: " + str(sdp_time))
            print("CPU_time: " + str(sdp_cpu))
            print(
                "See point file for more information. Check the times are consistent."
            )

            point = Point(*([phi, sing] + key + [
                components, max_dimension, result, run_time, cpu_time, cb_time,
                cb_cpu, bootstrap.xml_time, bootstrap.xml_cpu, sdp_time,
                sdp_cpu
            ]))
            self.point_table.append(point)
            point.save(self.point_file)