Ejemplo n.º 1
0
    def test_last_dim_is_batch(self):
        a = (
            torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.5]])
            .view(3, 2)
            .transpose(-1, -2)
        )
        b = (
            torch.tensor([[0.5, 0.6], [0.7, 0.8], [0.6, 0.6]])
            .view(3, 2)
            .transpose(-1, -2)
        )
        power = 1
        offset = 1

        kernel = DownsamplingKernel()
        kernel.initialize(power=power, offset=offset)
        kernel.eval()
        res = kernel(a, b, last_dim_is_batch=True).evaluate()

        actual = torch.zeros(3, 2, 2)

        diff = torch.tensor([[0.45, 0.36], [0.4, 0.32]])
        actual[0, :, :] = offset + diff.pow(1 + power)

        diff = torch.tensor([[0.21, 0.14], [0.18, 0.12]])
        actual[1, :, :] = offset + diff.pow(1 + power)

        diff = torch.tensor([[0.2, 0.2], [0.2, 0.2]])
        actual[2, :, :] = offset + diff.pow(1 + power)
        self.assertLess(torch.norm(res - actual), 1e-5)
Ejemplo n.º 2
0
    def test_subset_computes_active_downsampling_function_batch(self):
        a = torch.tensor([[0.1, 0.2, 0.2], [0.3, 0.4, 0.2], [0.5, 0.5, 0.5]]).view(
            3, 3, 1
        )
        a_p = torch.tensor([[0.1, 0.2, 0.2], [0.3, 0.4, 0.2], [0.5, 0.5, 0.5]]).view(
            3, 3, 1
        )
        a = torch.cat((a, a_p), 2)
        b = torch.tensor([[0.5, 0.6, 0.1], [0.7, 0.8, 0.2], [0.6, 0.6, 0.5]]).view(
            3, 3, 1
        )
        power = 1
        offset = 1
        kernel = DownsamplingKernel(batch_shape=torch.Size([3]), active_dims=[0])
        kernel.initialize(power=power, offset=offset)
        kernel.eval()
        res = kernel(a, b).evaluate()

        actual = torch.zeros(3, 3, 3)

        diff = torch.tensor([[0.45, 0.36, 0.81], [0.4, 0.32, 0.72], [0.4, 0.32, 0.72]])
        actual[0, :, :] = offset + diff.pow(1 + power)

        diff = torch.tensor(
            [[0.21, 0.14, 0.56], [0.18, 0.12, 0.48], [0.24, 0.16, 0.64]]
        )
        actual[1, :, :] = offset + diff.pow(1 + power)

        diff = torch.tensor([[0.2, 0.2, 0.25], [0.2, 0.2, 0.25], [0.2, 0.2, 0.25]])
        actual[2, :, :] = offset + diff.pow(1 + power)
        self.assertLess(torch.norm(res - actual), 1e-5)
Ejemplo n.º 3
0
    def test_computes_downsampling_function(self):
        a = torch.tensor([0.1, 0.2]).view(2, 1)
        b = torch.tensor([0.2, 0.4]).view(2, 1)
        power = 1
        offset = 1

        kernel = DownsamplingKernel()
        kernel.initialize(power=power, offset=offset)
        kernel.eval()

        diff = torch.tensor([[0.72, 0.54], [0.64, 0.48]])
        actual = offset + diff.pow(1 + power)
        res = kernel(a, b).evaluate()

        self.assertLess(torch.norm(res - actual), 1e-5)
Ejemplo n.º 4
0
    def test_diag_calculation(self):
        a = torch.tensor([0.1, 0.2]).view(2, 1)
        b = torch.tensor([0.2, 0.4]).view(2, 1)
        power = 1
        offset = 1

        kernel = DownsamplingKernel()
        kernel.initialize(power=power, offset=offset)
        kernel.eval()

        diff = torch.tensor([[0.72, 0.54], [0.64, 0.48]])
        actual = offset + diff.pow(1 + power)
        res = kernel(a, b, diag=True)

        self.assertLess(torch.norm(res - torch.diag(actual)), 1e-5)
Ejemplo n.º 5
0
    def test_computes_downsampling_function_batch(self):
        a = torch.tensor([[0.1, 0.2], [0.3, 0.4], [0.5, 0.5]]).view(3, 2, 1)
        b = torch.tensor([[0.5, 0.6], [0.7, 0.8], [0.6, 0.6]]).view(3, 2, 1)
        power = 1
        offset = 1

        kernel = DownsamplingKernel(batch_shape=torch.Size([3]))
        kernel.initialize(power=power, offset=offset)
        kernel.eval()
        res = kernel(a, b).evaluate()

        actual = torch.zeros(3, 2, 2)

        diff = torch.tensor([[0.45, 0.36], [0.4, 0.32]])
        actual[0, :, :] = offset + diff.pow(1 + power)

        diff = torch.tensor([[0.21, 0.14], [0.18, 0.12]])
        actual[1, :, :] = offset + diff.pow(1 + power)

        diff = torch.tensor([[0.2, 0.2], [0.2, 0.2]])
        actual[2, :, :] = offset + diff.pow(1 + power)
        self.assertLess(torch.norm(res - actual), 1e-5)
Ejemplo n.º 6
0
 def test_initialize_power_batch(self):
     kernel = DownsamplingKernel(batch_shape=torch.Size([2]))
     power_init = torch.tensor([1.0, 2.0])
     kernel.initialize(power=power_init)
     actual_value = power_init.view_as(kernel.power)
     self.assertLess(torch.norm(kernel.power - actual_value), 1e-5)
Ejemplo n.º 7
0
 def test_initialize_power(self):
     kernel = DownsamplingKernel()
     kernel.initialize(power=1)
     actual_value = torch.tensor(1.0).view_as(kernel.power)
     self.assertLess(torch.norm(kernel.power - actual_value), 1e-5)
Ejemplo n.º 8
0
 def test_initialize_offset_batch(self):
     kernel = DownsamplingKernel(batch_shape=torch.Size([2]))
     off_init = torch.tensor([1.0, 2.0])
     kernel.initialize(offset=off_init)
     actual_value = off_init.view_as(kernel.offset)
     self.assertLess(torch.norm(kernel.offset - actual_value), 1e-5)
Ejemplo n.º 9
0
 def test_initialize_offset(self):
     kernel = DownsamplingKernel()
     kernel.initialize(offset=1)
     actual_value = torch.tensor(1.0).view_as(kernel.offset)
     self.assertLess(torch.norm(kernel.offset - actual_value), 1e-5)