Ejemplo n.º 1
0
    def evaluate(self, image_file=None, image=None):
        show = False
        if image is None:
            image = skimage.img_as_float(imread(image_file))
            show = True

        image, classes, offsets = self.detect_objects(image)
        class_names, rects, _, _ = show_boxes(args,
                                              image,
                                              classes,
                                              offsets,
                                              self.feature_shapes,
                                              show=show)
        return class_names, rects
Ejemplo n.º 2
0
    def evaluate(self, image_file=None, image=None):
        show = False
        if image is None:
            image = skimage.img_as_float(imread(image_file))
            show = True

        image = np.expand_dims(image, axis=0)
        classes, offsets = self.ssd.predict(image)
        # print("Classes shape: ", classes.shape)
        # print("Offsets shape: ", offsets.shape)
        image = np.squeeze(image, axis=0)
        # classes = np.argmax(classes[0], axis=1)
        classes = np.squeeze(classes)
        # classes = np.argmax(classes, axis=1)
        offsets = np.squeeze(offsets)
        class_names, rects, _, _ = show_boxes(image,
                                              classes,
                                              offsets,
                                              self.feature_shapes,
                                              show=show,
                                              normalize=self.normalize)
        return class_names, rects
Ejemplo n.º 3
0
    def evaluate_test(self):
        # test labels csv path
        path = os.path.join(self.args.data_path,
                            self.args.test_labels)
        # test dictionary
        dictionary, _ = build_label_dictionary(path)
        keys = np.array(list(dictionary.keys()))
        # sum of precision
        s_precision = 0
        # sum of recall
        s_recall = 0
        # sum of IoUs
        s_iou = 0
        # evaluate per image
        for key in keys:
            # grounnd truth labels
            labels = np.array(dictionary[key])
            # 4 boxes coords are 1st four items of labels
            gt_boxes = labels[:, 0:-1]
            # last one is class
            gt_class_ids = labels[:, -1]
            # load image id by key
            image_file = os.path.join(self.args.data_path, key)
            image = skimage.img_as_float(imread(image_file))
            image, classes, offsets = self.detect_objects(image)
            # perform nms
            _, _, class_ids, boxes = show_boxes(args,
                                                image,
                                                classes,
                                                offsets,
                                                self.feature_shapes,
                                                show=False)

            boxes = np.reshape(np.array(boxes), (-1,4))
            # compute IoUs
            iou = layer_utils.iou(gt_boxes, boxes)
            # skip empty IoUs
            if iou.size ==0:
                continue
            # the class of predicted box w/ max iou
            maxiou_class = np.argmax(iou, axis=1)

            # true positive
            tp = 0
            # false positiove
            fp = 0
            # sum of objects iou per image
            s_image_iou = []
            for n in range(iou.shape[0]):
                # ground truth bbox has a label
                if iou[n, maxiou_class[n]] > 0:
                    s_image_iou.append(iou[n, maxiou_class[n]])
                    # true positive has the same class and gt
                    if gt_class_ids[n] == class_ids[maxiou_class[n]]:
                        tp += 1
                    else:
                        fp += 1

            # objects that we missed (false negative)
            fn = abs(len(gt_class_ids) - tp)
            s_iou += (np.sum(s_image_iou) / iou.shape[0])
            s_precision += (tp/(tp + fp))
            s_recall += (tp/(tp + fn))


        n_test = len(keys)
        print_log("mIoU: %f" % (s_iou/n_test),
                  self.args.verbose)
        print_log("Precision: %f" % (s_precision/n_test),
                  self.args.verbose)
        print_log("Recall : %f" % (s_recall/n_test),
                  self.args.verbose)
Ejemplo n.º 4
0
    def evaluate_test(self):
        csv_path = os.path.join(config.params['data_path'],
                                config.params['test_labels'])
        print("CSV", csv_path)
        dictionary, _ = build_label_dictionary(csv_path)
        keys = np.array(list(dictionary.keys()))
        n_iou = 0
        s_iou = 0
        i = 0
        tp = 0
        fp = 0
        for key in keys:
            labels = dictionary[key]
            labels = np.array(labels)
            # 4 boxes coords are 1st four items of labels
            gt_boxes = labels[:, 0:-1]
            gt_class_ids = labels[:, -1]
            image_file = os.path.join(config.params['data_path'], key)
            print("Image: ", image_file)
            image = skimage.img_as_float(imread(image_file))
            image = np.expand_dims(image, axis=0)
            classes, offsets = self.ssd.predict(image)
            image = np.squeeze(image, axis=0)
            classes = np.squeeze(classes)
            offsets = np.squeeze(offsets)
            _, _, class_ids, boxes = show_boxes(image,
                                                classes,
                                                offsets,
                                                self.feature_shapes,
                                                show=False,
                                                normalize=self.normalize)

            boxes = np.reshape(np.array(boxes), (-1, 4))
            iou = layer_utils.iou(gt_boxes, boxes)
            if iou.size == 0:
                continue
            print("--------------")
            print("gt:", gt_class_ids, gt_boxes)
            print("iou w/ gt:", iou)
            print("iou shape:", iou.shape)
            maxiou_class = np.argmax(iou, axis=1)
            print("classes: ", maxiou_class)
            n = iou.shape[0]
            n_iou += n
            s = []
            for j in range(n):
                s.append(iou[j, maxiou_class[j]])
                if gt_class_ids[j] == class_ids[maxiou_class[j]]:
                    tp += 1
                else:
                    fp += 1

            fp += abs(len(class_ids) - len(gt_class_ids))
            print("max ious: ", s)
            s = np.sum(s)
            s_iou += s
            print("pred:", class_ids, boxes)

            print("--------------")
            # i += 1
            #if i==10:
            #    break

        print("sum:", s_iou)
        print("num:", n_iou)
        print("mIoU:", s_iou / n_iou)
        print("tp:", tp)
        print("fp:", fp)
        print("precision:", tp / (tp + fp))