def run(self):
        while not self.kill_received:
            # get a task
            try:
                job = self.work_queue.get_nowait()
            except Queue.Empty:
                break

            start_time = time.time()

            print("Creating a Scene")
            boxm_batch.init_process("boxmCreateSceneProcess")
            boxm_batch.set_input_string(0, job.input_scene_path)
            boxm_batch.run_process()
            (scene_id, scene_type) = boxm_batch.commit_output(0)
            scene = dbvalue(scene_id, scene_type)

            print("Save Scene")
            boxm_batch.init_process("boxmSaveOccupancyRawProcess")
            boxm_batch.set_input_from_db(0, scene)
            boxm_batch.set_input_string(1, job.output_scene_path)
            boxm_batch.set_input_unsigned(2, 0)
            boxm_batch.set_input_unsigned(3, 1)
            boxm_batch.run_process()

            print("Runing time for worker:", self.name)
            print(time.time() - start_time)
Ejemplo n.º 2
0
def runprobe(event):
    posx = event.x
    posy = event.y
    array2d = list()

    plt.figure(1)
    plt.clf()
    print ("Run ray tracing")
    boxm_batch.init_process("boxmOclRunRenderProbeProcess")
    boxm_batch.set_input_from_db(0, scene_mgr)
    boxm_batch.set_input_from_db(1, cam)
    boxm_batch.set_input_unsigned(2, posx)
    boxm_batch.set_input_unsigned(3, posy)
    boxm_batch.set_input_float(4, (image2.getpixel((posx, posy))) / 255.0)
    boxm_batch.run_process()

    for i in range(0, 10):
        (scene_id, scene_type) = boxm_batch.commit_output(i)
        array_1d = dbvalue(scene_id, scene_type)
        vallist = boxm_batch.get_bbas_1d_array_float(scene_id)
        array2d.append(vallist)

    for i in [1, 2, 3, 5]:
        plt.plot(array2d[0], array2d[i])
    # plt.plot(array2d[0],array2d[7]);
    plt.legend(("Omega", "Mean0", "Alpha", "Mean1"), loc="upper left")
    print (image2.getpixel((posx, posy))) / 255.0
    plt.show()
Ejemplo n.º 3
0
def neighborchange(event):
    posx = event.x
    posy = event.y
    array2d = list()

    vallist = list()
    plt.figure(1)
    plt.clf()
    for i in (-1, 0):
        for j in (-1, 0):
            print ("Run ray tracing")
            boxm_batch.init_process("boxmOclRunRenderProbeProcess")
            boxm_batch.set_input_from_db(0, scene_mgr)
            boxm_batch.set_input_from_db(1, cam)
            boxm_batch.set_input_unsigned(2, posx + i)
            boxm_batch.set_input_unsigned(3, posy + j)
            boxm_batch.set_input_float(4, (image2.getpixel((posx, posy))) / 255.0)
            boxm_batch.run_process()
            (scene_id, scene_type) = boxm_batch.commit_output(10)
            x = boxm_batch.get_input_float(scene_id)
            vallist.append(x)
    print vallist
Ejemplo n.º 4
0
 def run(self):
     while not self.kill_received:
          # get a task
         try:
             job = self.work_queue.get_nowait()
         except Queue.Empty:
             break
             
         start_time = time.time();    
         
         model_dir=job.model_dir;
         model_name =job.model_name;
         grey_offset = job.grey_offset;
         
         print("Model dir:")
         print model_dir
         print("Model Name:")
         print model_name
         
         
         print("Creating a Scene");
         boxm_batch.init_process("boxmCreateSceneProcess");
         boxm_batch.set_input_string(0,  model_dir + "/" + model_name + ".xml");
         boxm_batch.run_process();
         (scene_id, scene_type) = boxm_batch.commit_output(0);
         scene= dbvalue(scene_id, scene_type);
         
        
         print("Splitting the scene");
         boxm_batch.init_process("boxmSplitSceneProcess");
         boxm_batch.set_input_from_db(0, scene);
         boxm_batch.run_process();
         (scene_id, scene_type) = boxm_batch.commit_output(0);
         apm_scene = dbvalue(scene_id, scene_type);
         (scene_id, scene_type) = boxm_batch.commit_output(1);
         alpha_scene = dbvalue(scene_id, scene_type);
         
         print("Save Scene");
         boxm_batch.init_process("boxmSaveScene    RawProcess");
         boxm_batch.set_input_from_db(0,alpha_scene);
         boxm_batch.set_input_string(1,model_dir + "/drishti/alpha_scene");
         boxm_batch.set_input_unsigned(2,0);
         boxm_batch.set_input_unsigned(3,1);
         boxm_batch.run_process();
         
         #free memory
         boxm_batch.clear();
      
         print ("Runing time for worker:", self.name)
         print(time.time() - start_time);
         
         #output exit code in this case
         #important: having a result queue makes the execute_jobs wait for all jobs in the queue before exiting
         self.result_queue.put(0);
   def run(self):
       while not self.kill_received:
            # get a task
           try:
               job = self.work_queue.get_nowait()
           except Queue.Empty:
               break
               
           start_time = time.time();    
           
           model_dir=job.model_dir;
           ply_file =job.ply_file;
           grey_offset = job.grey_offset;
           
           boxm_batch.set_stdout('logs/log_' + str(os.getpid())+ ".txt");
 
             
           boxm_batch.init_process("boxmCreateSceneProcess");
           boxm_batch.set_input_string(0, model_dir +"/pmvs_scene.xml");
           boxm_batch.run_process();
           (scene_id, scene_type) = boxm_batch.commit_output(0);
           scene= dbvalue(scene_id, scene_type);
           
           boxm_batch.init_process("boxm_create_scene_from_ply_process");
           boxm_batch.set_input_string(0,ply_file);
           boxm_batch.set_input_from_db(1,scene);
           boxm_batch.set_input_float(2,grey_offset);
           boxm_batch.run_process();
           (scene_id, scene_type) = boxm_batch.commit_output(0);
           scene = dbvalue(scene_id, scene_type);
           
           
           print("Save Scene");
           boxm_batch.init_process("boxmSaveSceneRawProcess");
           boxm_batch.set_input_from_db(0,scene);
           boxm_batch.set_input_string(1,model_dir + "/drishti/ply_scene");
           boxm_batch.set_input_unsigned(2,0);
           boxm_batch.set_input_unsigned(3,1);
           boxm_batch.run_process();
           
           #free memory
           boxm_batch.reset_stdout();
           boxm_batch.clear();
        
           print ("Runing time for worker:", self.name)
           print(time.time() - start_time);
           
           #output exit code in this case
           #important: having a result queue makes the execute_jobs wait for all jobs in the queue before exiting
           self.result_queue.put(0);
Ejemplo n.º 6
0
boxm_batch.register_datatypes()


class dbvalue:
    def __init__(self, index, type):
        self.id = index  # unsigned integer
        self.type = type  # string


dir = "/Users/isa/Experiments/super3d/scene/expectedImgs_2"
test_frames = [8, 112, 96, 208]

for frame in test_frames:
    boxm_batch.init_process("vilLoadImageViewProcess")
    boxm_batch.set_input_string(0, dir + "/predicted_img_mask_%(#)05d.tiff" % {"#": frame})
    boxm_batch.run_process()
    (id, type) = boxm_batch.commit_output(0)
    vis_img = dbvalue(id, type)

    boxm_batch.init_process("vilThresholdImageProcess")
    boxm_batch.set_input_from_db(0, vis_img)
    boxm_batch.set_input_float(1, 0.99)
    boxm_batch.set_input_bool(2, True)
    boxm_batch.run_process()
    (id, type) = boxm_batch.commit_output(0)
    mask_img = dbvalue(id, type)

    boxm_batch.init_process("vilSaveImageViewProcess")
    boxm_batch.set_input_from_db(0, mask_img)
    boxm_batch.set_input_string(1, dir + "/binary_mask_%(#)05d.tiff" % {"#": frame})
    boxm_batch.run_process()
Ejemplo n.º 7
0
if not os.path.isdir( model_imgs_dir + "/"):
  os.mkdir( model_imgs_dir + "/");

image_fnames = "/Volumes/vision/video/dec/Downtown/video/frame_%05d.png";
camera_fnames = "/Volumes/vision/video/dec/Downtown/cameras_KRT/camera_%05d.txt";
expected_fname = model_imgs_dir + "/expected_%05d.tiff";
image_id_fname = model_imgs_dir + "/schedule_refined.txt";
expected_fname_no_dir = "/expected_%05d.tiff"



print("Creating a Scene");
boxm_batch.init_process("boxmCreateSceneProcess");
boxm_batch.set_input_string(0,  model_dir +"/downtown_scene.xml");
boxm_batch.run_process();
(scene_id, scene_type) = boxm_batch.commit_output(0);
scene = dbvalue(scene_id, scene_type);

print("Loading Virtual Camera");
boxm_batch.init_process("vpglLoadPerspectiveCameraProcess");
boxm_batch.set_input_string(0,camera_fnames % 40);
boxm_batch.run_process();
(id,type) = boxm_batch.commit_output(0);
vcam = dbvalue(id,type);



import random;
schedule = [i for i in range(0,180,9)];
nframes =len(schedule);
Ejemplo n.º 8
0
keys_available = 0  # if keys have already been extracted, just load them

# after finding F between a pair, all matches that are off by 0.6% of
# max(image_width, image_height) pixels are considered outliers
outlier_threshold_percentage = 0.6
# for an image pair to be connected in the image connectivity graph
min_number_of_matches = 16

imgs = []
sizes = []
for i in range(0, img_cnt, 1):
    print("Loading Image")
    boxm_batch.init_process("vilLoadImageViewProcess")
    boxm_batch.set_input_string(0, img_path + img_name % i)
    boxm_batch.run_process()
    (id, type) = boxm_batch.commit_output(0)
    image = dbvalue(id, type)
    imgs.append(image)

    boxm_batch.init_process("vilImageSizeProcess")
    boxm_batch.set_input_from_db(0, image)
    boxm_batch.run_process()
    (ni_id, type) = boxm_batch.commit_output(0)
    (nj_id, type) = boxm_batch.commit_output(1)
    ni = boxm_batch.get_input_unsigned(ni_id)
    nj = boxm_batch.get_input_unsigned(nj_id)
    if ni > nj:
        sizes.append(ni)
    else:
        sizes.append(nj)
Ejemplo n.º 9
0
keys_available = 0  # if keys have already been extracted, just load them

# after finding F between a pair, all matches that are off by 0.6% of
# max(image_width, image_height) pixels are considered outliers
outlier_threshold_percentage = 0.6
# for an image pair to be connected in the image connectivity graph
min_number_of_matches = 16

imgs = []
sizes = []
for i in range(0, img_cnt, 1):
    print("Loading Image")
    batch.init_process("vilLoadImageViewProcess")
    batch.set_input_string(0, img_path + img_name % i)
    batch.run_process()
    (id, type) = batch.commit_output(0)
    image = dbvalue(id, type)
    imgs.append(image)

    batch.init_process("vilImageSizeProcess")
    batch.set_input_from_db(0, image)
    batch.run_process()
    (ni_id, type) = batch.commit_output(0)
    (nj_id, type) = batch.commit_output(1)
    ni = batch.get_input_unsigned(ni_id)
    nj = batch.get_input_unsigned(nj_id)
    if ni > nj:
        sizes.append(ni)
    else:
        sizes.append(nj)
Ejemplo n.º 10
0
keys_available = 0          # if keys have already been extracted, just load them

# after finding F between a pair, all matches that are off by 0.6% of
# max(image_width, image_height) pixels are considered outliers
outlier_threshold_percentage = 0.6
# for an image pair to be connected in the image connectivity graph
min_number_of_matches = 16

imgs = []
sizes = []
for i in range(0, img_cnt, 1):
    print("Loading Image")
    batch.init_process("vilLoadImageViewProcess")
    batch.set_input_string(0, img_path + img_name % i)
    batch.run_process()
    (id, type) = batch.commit_output(0)
    image = dbvalue(id, type)
    imgs.append(image)

    batch.init_process("vilImageSizeProcess")
    batch.set_input_from_db(0, image)
    batch.run_process()
    (ni_id, type) = batch.commit_output(0)
    (nj_id, type) = batch.commit_output(1)
    ni = batch.get_input_unsigned(ni_id)
    nj = batch.get_input_unsigned(nj_id)
    if ni > nj:
        sizes.append(ni)
    else:
        sizes.append(nj)