Ejemplo n.º 1
0
def start():

    ###############
    # preparation #
    ###############

    model = Model(last_conv_stride=last_conv_stride,
                  num_stripes=num_stripes,
                  local_conv_out_channels=local_conv_out_channels)
    model_w = DataParallel(model)
    TMO([model])

    # preprocessing
    preprocessor = PreProcessIm(resize_h_w=resize_h_w,
                                scale=scale_im,
                                im_mean=im_mean,
                                im_std=im_std)

    # load model
    map_location = (lambda storage, loc: storage)
    sd = torch.load(model_weight_file, map_location=map_location)
    load_state_dict(model, sd['state_dicts'][0])
    print('Loaded model weight from {}'.format(model_weight_file))

    extractor = ExtractFeature(model_w, TVT)
    return preprocessor, extractor
Ejemplo n.º 2
0
  def test_record(load_model_weight=False):
    if load_model_weight:
      if cfg.model_weight_file != '':
        map_location = (lambda storage, loc: storage)
        sd = torch.load(cfg.model_weight_file, map_location=map_location)
        load_state_dict(model, sd['state_dicts'][0])
        print('Loaded model weights from {}'.format(cfg.model_weight_file))
      else:
        load_ckpt(modules_optims, cfg.ckpt_file)

    #record trainval feat
    epoch_done = False
    print('\n=========> Record on Trainval:  <=========\n')
    i = 0
    feat_list = []
    h_list = []
    im_names_list = []
    while not epoch_done:
      ims, im_names, labels, mirrored, epoch_done = train_set.next_batch()
      # print('the size of ims:{}'.format(ims.size()))
      print(ims.shape)
      ims_var = Variable(TVT(torch.from_numpy(ims).float()))
      print(ims_var.shape)
      feat,_,h,_ = model(ims_var)
      h = [lf.cpu().data.numpy() for lf in h]
      h = np.concatenate(h, axis=2)
      feat_list.append(feat.numpy())
      h_list.append(h)
      im_names_list.append(im_names)
    feat_list=np.concatenate(feat_list, axis=0)
    h_list=np.concatenate(h_list, axis=0)
    im_names_list=np.concatenate(im_names_list, axis=0)    
    save_mat(1,cfg.record_file,feat_list,h_list,im_names_list)
    print('saved successfully.......') 
Ejemplo n.º 3
0
    def test(load_model_weight=False):
        if load_model_weight:
            if cfg.model_weight_file != '':
                map_location = (lambda storage, loc: storage)
                sd = torch.load(cfg.model_weight_file,
                                map_location=map_location)
                load_state_dict(model, sd)
                print('Loaded model weights from {}'.format(
                    cfg.model_weight_file))
            else:
                load_ckpt(modules_optims, cfg.ckpt_file)

        for test_set, name in zip(test_sets, test_set_names):
            test_set.set_feat_func(ExtractFeature(model_w, TVT))
            print('\n=========> Test on dataset: {} <=========\n'.format(name))
            test_set.eval(normalize_feat=True, verbose=True)
Ejemplo n.º 4
0
  def test(load_model_weight=False):
    if load_model_weight:
      if cfg.model_weight_file != '':
        map_location = (lambda storage, loc: storage)
        sd = torch.load(cfg.model_weight_file, map_location=map_location)
        load_state_dict(model, sd)
        print('Loaded model weights from {}'.format(cfg.model_weight_file))
      else:
        load_ckpt(modules_optims, cfg.ckpt_file)

    for test_set, name in zip(test_sets, test_set_names):
      test_set.set_feat_func(ExtractFeature(model_w, TVT))
      print('\n=========> Test on dataset: {} <=========\n'.format(name))
      test_set.eval(
        normalize_feat=True,
        verbose=True)
def main():
    cfg = Config()

    # Redirect logs to both console and file.
    if cfg.log_to_file:
        ReDirectSTD(cfg.stdout_file, 'stdout', False)
        ReDirectSTD(cfg.stderr_file, 'stderr', False)

    TVT, TMO = set_devices(cfg.sys_device_ids)

    # Dump the configurations to log.
    import pprint
    print('-' * 60)
    print('cfg.__dict__')
    pprint.pprint(cfg.__dict__)
    print('-' * 60)

    ###########
    # Dataset #
    ###########

    test_set = create_dataset(**cfg.test_set_kwargs)

    #########
    # Model #
    #########

    model = Model(last_conv_stride=cfg.last_conv_stride,
                  num_stripes=cfg.num_stripes,
                  local_conv_out_channels=cfg.local_conv_out_channels,
                  num_classes=0)
    # Model wrapper
    model_w = DataParallel(model)

    # May Transfer Model to Specified Device.
    TMO([model])

    #####################
    # Load Model Weight #
    #####################

    # To first load weights to CPU
    map_location = (lambda storage, loc: storage)
    used_file = cfg.model_weight_file or cfg.ckpt_file
    loaded = torch.load(used_file, map_location=map_location)
    if cfg.model_weight_file == '':
        loaded = loaded['state_dicts'][0]
    load_state_dict(model, loaded)
    print('Loaded model weights from {}'.format(used_file))

    ###################
    # Extract Feature #
    ###################

    test_set.set_feat_func(ExtractFeature(model_w, TVT))

    with measure_time('Extracting feature...', verbose=True):
        feat, ids, cams, im_names, marks = test_set.extract_feat(True,
                                                                 verbose=True)

    #######################
    # Select Query Images #
    #######################

    # Fix some query images, so that the visualization for different models can
    # be compared.

    # Sort in the order of image names
    inds = np.argsort(im_names)
    feat, ids, cams, im_names, marks = \
      feat[inds], ids[inds], cams[inds], im_names[inds], marks[inds]

    # query, gallery index mask
    is_q = marks == 0
    is_g = marks == 1

    prng = np.random.RandomState(1)
    # selected query indices
    sel_q_inds = prng.permutation(range(np.sum(is_q)))[:cfg.num_queries]

    q_ids = ids[is_q][sel_q_inds]
    q_cams = cams[is_q][sel_q_inds]
    q_feat = feat[is_q][sel_q_inds]
    q_im_names = im_names[is_q][sel_q_inds]

    ####################
    # Compute Distance #
    ####################

    # query-gallery distance
    q_g_dist = compute_dist(q_feat, feat[is_g], type='euclidean')

    ###########################
    # Save Rank List as Image #
    ###########################

    q_im_paths = [ospj(test_set.im_dir, n) for n in q_im_names]
    save_paths = [ospj(cfg.exp_dir, 'rank_lists', n) for n in q_im_names]
    g_im_paths = [ospj(test_set.im_dir, n) for n in im_names[is_g]]

    for dist_vec, q_id, q_cam, q_im_path, save_path in zip(
            q_g_dist, q_ids, q_cams, q_im_paths, save_paths):

        rank_list, same_id = get_rank_list(dist_vec, q_id, q_cam, ids[is_g],
                                           cams[is_g], cfg.rank_list_size)

        save_rank_list_to_im(rank_list, same_id, q_im_path, g_im_paths,
                             save_path)
def main():
  cfg = Config()

  # Redirect logs to both console and file.
  if cfg.log_to_file:
    ReDirectSTD(cfg.stdout_file, 'stdout', False)
    ReDirectSTD(cfg.stderr_file, 'stderr', False)

  TVT, TMO = set_devices(cfg.sys_device_ids)

  # Dump the configurations to log.
  import pprint
  print('-' * 60)
  print('cfg.__dict__')
  pprint.pprint(cfg.__dict__)
  print('-' * 60)

  ###########
  # Dataset #
  ###########

  test_set = create_dataset(**cfg.test_set_kwargs)

  #########
  # Model #
  #########

  model = Model(
    last_conv_stride=cfg.last_conv_stride,
    num_stripes=cfg.num_stripes,
    local_conv_out_channels=cfg.local_conv_out_channels,
    num_classes=0
  )
  # Model wrapper
  model_w = DataParallel(model)

  # May Transfer Model to Specified Device.
  TMO([model])

  #####################
  # Load Model Weight #
  #####################

  # To first load weights to CPU
  map_location = (lambda storage, loc: storage)
  used_file = cfg.model_weight_file or cfg.ckpt_file
  loaded = torch.load(used_file, map_location=map_location)
  if cfg.model_weight_file == '':
    loaded = loaded['state_dicts'][0]
  load_state_dict(model, loaded)
  print('Loaded model weights from {}'.format(used_file))

  ###################
  # Extract Feature #
  ###################

  test_set.set_feat_func(ExtractFeature(model_w, TVT))

  with measure_time('Extracting feature...', verbose=True):
    feat, ids, cams, im_names, marks = test_set.extract_feat(True, verbose=True)

  #######################
  # Select Query Images #
  #######################

  # Fix some query images, so that the visualization for different models can
  # be compared.

  # Sort in the order of image names
  inds = np.argsort(im_names)
  feat, ids, cams, im_names, marks = \
    feat[inds], ids[inds], cams[inds], im_names[inds], marks[inds]

  # query, gallery index mask
  is_q = marks == 0
  is_g = marks == 1

  prng = np.random.RandomState(1)
  # selected query indices
  sel_q_inds = prng.permutation(range(np.sum(is_q)))[:cfg.num_queries]

  q_ids = ids[is_q][sel_q_inds]
  q_cams = cams[is_q][sel_q_inds]
  q_feat = feat[is_q][sel_q_inds]
  q_im_names = im_names[is_q][sel_q_inds]

  ####################
  # Compute Distance #
  ####################

  # query-gallery distance
  q_g_dist = compute_dist(q_feat, feat[is_g], type='euclidean')

  ###########################
  # Save Rank List as Image #
  ###########################

  q_im_paths = [ospj(test_set.im_dir, n) for n in q_im_names]
  save_paths = [ospj(cfg.exp_dir, 'rank_lists', n) for n in q_im_names]
  g_im_paths = [ospj(test_set.im_dir, n) for n in im_names[is_g]]

  for dist_vec, q_id, q_cam, q_im_path, save_path in zip(
      q_g_dist, q_ids, q_cams, q_im_paths, save_paths):

    rank_list, same_id = get_rank_list(
      dist_vec, q_id, q_cam, ids[is_g], cams[is_g], cfg.rank_list_size)

    save_rank_list_to_im(rank_list, same_id, q_im_path, g_im_paths, save_path)