def test_first_fold():
    data = np.arange(10)
    dataset = DenseDesignMatrixWrapper(topo_view=to_4d_array(data), y=np.zeros(10))
    splitter = SingleFoldSplitter(n_folds=10, 
        i_test_fold=0)
    datasets= splitter.split_into_train_valid_test(dataset)
    
    assert np.array_equal(to_4d_array(np.arange(1,9)), 
                   datasets['train'].get_topological_view() )
    assert np.array_equal(to_4d_array([9]), 
                   datasets['valid'].get_topological_view() )
    assert np.array_equal(to_4d_array([0]), 
                   datasets['test'].get_topological_view() )
Ejemplo n.º 2
0
def test_first_fold():
    data = np.arange(10)
    dataset = DenseDesignMatrixWrapper(topo_view=to_4d_array(data),
                                       y=np.zeros(10))
    splitter = SingleFoldSplitter(n_folds=10, i_test_fold=0)
    datasets = splitter.split_into_train_valid_test(dataset)

    assert np.array_equal(to_4d_array(np.arange(1, 9)),
                          datasets['train'].get_topological_view())
    assert np.array_equal(to_4d_array([9]),
                          datasets['valid'].get_topological_view())
    assert np.array_equal(to_4d_array([0]),
                          datasets['test'].get_topological_view())
def test_repeated_calls_with_shuffle():
    """Repeated calls should always lead to same split"""
    data = np.arange(100)
    dataset = DenseDesignMatrixWrapper(topo_view=to_4d_array(data), 
        y=np.zeros(100))
    splitter = SingleFoldSplitter(n_folds=10, 
        i_test_fold=9, shuffle=True)
    reference_datasets = splitter.split_into_train_valid_test(dataset)
    
    # 20 attemptsat splitting should all lead to same datasets!
    for _ in range(20):
        new_datasets = splitter.split_into_train_valid_test(dataset)
        for key in reference_datasets:
            assert np.array_equal(reference_datasets[key].get_topological_view(),
                new_datasets[key].get_topological_view())
Ejemplo n.º 4
0
def test_repeated_calls_with_shuffle():
    """Repeated calls should always lead to same split"""
    data = np.arange(100)
    dataset = DenseDesignMatrixWrapper(topo_view=to_4d_array(data),
                                       y=np.zeros(100))
    splitter = SingleFoldSplitter(n_folds=10, i_test_fold=9, shuffle=True)
    reference_datasets = splitter.split_into_train_valid_test(dataset)

    # 20 attemptsat splitting should all lead to same datasets!
    for _ in range(20):
        new_datasets = splitter.split_into_train_valid_test(dataset)
        for key in reference_datasets:
            assert np.array_equal(
                reference_datasets[key].get_topological_view(),
                new_datasets[key].get_topological_view())
Ejemplo n.º 5
0
def test_preprocessed_splitter():
    class DemeanPreproc():
        """Just for tests :)"""
        def apply(self, dataset, can_fit=False):
            topo_view = dataset.get_topological_view()
            if can_fit:
                self.mean = np.mean(topo_view)
            dataset.set_topological_view(topo_view - self.mean)

    data = np.arange(10)
    dataset = DenseDesignMatrixWrapper(topo_view=to_4d_array(data),
                                       y=np.zeros(10))
    splitter = SingleFoldSplitter(n_folds=10, i_test_fold=9)
    preproc_splitter = PreprocessedSplitter(dataset_splitter=splitter,
                                            preprocessor=DemeanPreproc())

    first_round_sets = preproc_splitter.get_train_valid_test(dataset)

    train_topo = first_round_sets['train'].get_topological_view()
    valid_topo = first_round_sets['valid'].get_topological_view()
    test_topo = first_round_sets['test'].get_topological_view()
    assert np.array_equal(
        train_topo, to_4d_array([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]))
    assert np.array_equal(valid_topo, to_4d_array([4.5]))
    assert np.array_equal(test_topo, to_4d_array([5.5]))

    second_round_set = preproc_splitter.get_train_merged_valid_test(dataset)

    train_topo = second_round_set['train'].get_topological_view()
    valid_topo = second_round_set['valid'].get_topological_view()
    test_topo = second_round_set['test'].get_topological_view()
    assert np.array_equal(train_topo,
                          to_4d_array([-4, -3, -2, -1, 0, 1, 2, 3, 4]))
    assert np.array_equal(valid_topo, to_4d_array([4]))
    assert np.array_equal(test_topo, to_4d_array([5]))
Ejemplo n.º 6
0
 def run(self):
     self.all_layers = []
     self.all_monitor_chans = []
     for i_fold in range(self.n_folds):
         log.info("Running fold {:d} of {:d}".format(
             i_fold + 1, self.n_folds))
         this_layers = deepcopy(self.final_layer)
         this_exp_args = deepcopy(self.exp_args)
         ## make sure dataset is loaded...
         self.dataset.ensure_is_loaded()
         dataset_splitter = SingleFoldSplitter(n_folds=self.n_folds,
                                               i_test_fold=i_fold,
                                               shuffle=self.shuffle)
         exp = Experiment(this_layers, self.dataset, dataset_splitter,
                          **this_exp_args)
         exp.setup()
         exp.run()
         self.all_layers.append(deepcopy(exp.final_layer))
         self.all_monitor_chans.append(deepcopy(exp.monitor_chans))