def get_deep_learning_model(model_args, valid_dataset):
    cuda = torch.cuda.is_available()
    device = model_args["device"] if cuda else 'cpu'
    if cuda:
        torch.backends.cudnn.benchmark = True
    seed = model_args["seed"]
    # = 20200220  random seed to make results reproducible
    # Set random seed to be able to reproduce results
    if seed:
        set_random_seeds(seed=seed, cuda=cuda)

    if model_args["model_type"] == "ShallowFBCSPNet":
        model = ShallowFBCSPNet(
            model_args["n_chans"],
            model_args["n_classes"] + 1,
            input_window_samples=model_args["input_window_samples"],
            final_conv_length='auto',
        )
    elif model_args["model_type"] == "SleepStager":
        model = model = SleepStager(
            n_channels=model_args["n_chans"],
            sfreq=model_args["sfreq"],
            n_classes=model_args["n_classes"] + 1,
            input_size_s=model_args["input_window_samples"] /
            model_args["sfreq"],
        )
    else:
        raise ValueError("Boom !")

    if cuda:
        model.cuda()

    clf = EEGClassifier(
        model,
        criterion=model_args["criterion"],
        optimizer=torch.optim.AdamW,
        # using test_sample for validation
        train_split=predefined_split(valid_dataset),
        optimizer__lr=model_args["lr"],
        optimizer__weight_decay=model_args["weight_decay"],
        batch_size=model_args["batch_size"],
        callbacks=[
            "accuracy",
            ("lr_scheduler",
             LRScheduler('CosineAnnealingLR',
                         T_max=model_args["n_epochs"] - 1)),
            ("early_stopping",
             EarlyStopping(monitor='valid_loss',
                           patience=model_args["patience"]))
        ],
        device=device,
        iterator_train__num_workers=20,
        iterator_train__pin_memory=True)  # torch.in torch.out

    return clf
Ejemplo n.º 2
0
def test_eeg_classifier_clonable():
    preds = np.array([
        [[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]],
        [[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
        [[1.0, 1.0, 1.0, 0.2], [0.0, 0.0, 0.0, 0.8]],
        [[0.9, 0.8, 0.9, 1.0], [0.1, 0.2, 0.1, 0.0]],
    ])
    clf = EEGClassifier(MockModule(preds),
                        cropped=False,
                        callbacks=[
                            "accuracy",
                            ("lr_scheduler",
                             LRScheduler('CosineAnnealingLR', T_max=1))
                        ],
                        criterion=CroppedLoss,
                        criterion__loss_function=nll_loss,
                        optimizer=optim.Adam,
                        batch_size=32)
    clone(clf)
    clf.initialize()
    clone(clf)
Ejemplo n.º 3
0
def test_trialwise_predict_and_predict_proba():
    preds = np.array([
        [0.125, 0.875],
        [1., 0.],
        [0.8, 0.2],
        [0.9, 0.1],
    ])
    clf = EEGClassifier(MockModule(preds), optimizer=optim.Adam, batch_size=32)
    clf.initialize()
    np.testing.assert_array_equal(preds.argmax(1), clf.predict(MockDataset()))
    np.testing.assert_array_equal(preds, clf.predict_proba(MockDataset()))
Ejemplo n.º 4
0
def test_cropped_predict_and_predict_proba_not_aggregate_predictions():
    preds = np.array([
        [[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]],
        [[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
        [[1.0, 1.0, 1.0, 0.2], [0.0, 0.0, 0.0, 0.8]],
        [[0.9, 0.8, 0.9, 1.0], [0.1, 0.2, 0.1, 0.0]],
    ])
    clf = EEGClassifier(MockModule(preds),
                        cropped=True,
                        criterion=CroppedLoss,
                        criterion__loss_function=nll_loss,
                        optimizer=optim.Adam,
                        batch_size=32,
                        aggregate_predictions=False)
    clf.initialize()
    np.testing.assert_array_equal(preds.argmax(1), clf.predict(MockDataset()))
    np.testing.assert_array_equal(preds, clf.predict_proba(MockDataset()))
Ejemplo n.º 5
0
def test_predict_trials():
    preds = np.array([
        [[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]],
        [[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
        [[1.0, 1.0, 1.0, 0.2], [0.0, 0.0, 0.0, 0.8]],
        [[0.9, 0.8, 0.9, 1.0], [0.1, 0.2, 0.1, 0.0]],
    ])
    clf = EEGClassifier(MockModule(preds),
                        cropped=False,
                        criterion=CroppedLoss,
                        criterion__loss_function=nll_loss,
                        optimizer=optim.Adam,
                        batch_size=32)
    clf.initialize()
    with pytest.warns(UserWarning,
                      match="This method was designed to predict "
                      "trials in cropped mode."):
        clf.predict_trials(MockDataset(), return_targets=False)
Ejemplo n.º 6
0
def test_cropped_predict_and_predict_proba():
    preds = np.array([
        [[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]],
        [[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
        [[1.0, 1.0, 1.0, 0.2], [0.0, 0.0, 0.0, 0.8]],
        [[0.9, 0.8, 0.9, 1.0], [0.1, 0.2, 0.1, 0.0]],
    ])
    clf = EEGClassifier(MockModule(preds),
                        cropped=True,
                        criterion=CroppedLoss,
                        criterion__loss_function=nll_loss,
                        optimizer=optim.Adam,
                        batch_size=32)
    clf.initialize()
    # for cropped decoding classifier returns one label for each trial (averaged over all crops)
    np.testing.assert_array_equal(
        preds.mean(-1).argmax(1), clf.predict(MockDataset()))
    # for cropped decoding classifier returns values for each trial (average over all crops)
    np.testing.assert_array_equal(preds.mean(-1),
                                  clf.predict_proba(MockDataset()))
def exp(subject_id):
    import torch
    test_subj = np.r_[subject_id]
    print('test subj:' + str(test_subj))
    # train_subj = np.setdiff1d(np.r_[1:10], test_subj)
    train_subj = np.setdiff1d(np.r_[1, 3, 7, 8], test_subj)

    tr = []
    val = []
    for ids in train_subj:
        train_size = int(0.99 * len(splitted[ids]))
        test_size = len(splitted[ids]) - train_size
        tr_i, val_i = torch.utils.data.random_split(splitted[ids],
                                                    [train_size, test_size])
        tr.append(tr_i)
        val.append(val_i)

    train_set = torch.utils.data.ConcatDataset(tr)
    valid_set = torch.utils.data.ConcatDataset(val)
    valid_set = BaseConcatDataset([splitted[ids] for ids in test_subj])

    ######################################################################
    # Create model
    # ------------
    #

    ######################################################################
    # Now we create the deep learning model! Braindecode comes with some
    # predefined convolutional neural network architectures for raw
    # time-domain EEG. Here, we use the shallow ConvNet model from `Deep
    # learning with convolutional neural networks for EEG decoding and
    # visualization <https://arxiv.org/abs/1703.05051>`__. These models are
    # pure `PyTorch <https://pytorch.org>`__ deep learning models, therefore
    # to use your own model, it just has to be a normal PyTorch
    # `nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__.
    #

    import torch
    from braindecode.util import set_random_seeds
    from braindecode.models import ShallowFBCSPNet, Deep4Net

    cuda = torch.cuda.is_available(
    )  # check if GPU is available, if True chooses to use it
    device = 'cuda:0' if cuda else 'cpu'
    if cuda:
        torch.backends.cudnn.benchmark = True
    seed = 20200220  # random seed to make results reproducible
    # Set random seed to be able to reproduce results
    set_random_seeds(seed=seed, cuda=cuda)

    n_classes = 3
    # Extract number of chans and time steps from dataset
    n_chans = train_set[0][0].shape[0]
    input_window_samples = train_set[0][0].shape[1]
    #
    # model = ShallowFBCSPNet(
    #     n_chans,
    #     n_classes,
    #     input_window_samples=input_window_samples,
    #     final_conv_length='auto',
    # )

    from mynetworks import Deep4Net_origin, ConvClfNet, FcClfNet

    model = Deep4Net(
        n_chans,
        n_classes,
        input_window_samples=input_window_samples,
        final_conv_length="auto",
    )

    #
    # embedding_net = Deep4Net_origin(4, 22, input_window_samples)
    # model = FcClfNet(embedding_net)
    # #

    print(model)

    # Send model to GPU
    if cuda:
        model.cuda()

    ######################################################################
    # Training
    # --------
    #

    ######################################################################
    # Now we train the network! EEGClassifier is a Braindecode object
    # responsible for managing the training of neural networks. It inherits
    # from skorch.NeuralNetClassifier, so the training logic is the same as in
    # `Skorch <https://skorch.readthedocs.io/en/stable/>`__.
    #

    ######################################################################
    #    **Note**: In this tutorial, we use some default parameters that we
    #    have found to work well for motor decoding, however we strongly
    #    encourage you to perform your own hyperparameter optimization using
    #    cross validation on your training data.
    #

    from skorch.callbacks import LRScheduler
    from skorch.helper import predefined_split

    from braindecode import EEGClassifier
    # # These values we found good for shallow network:
    lr = 0.0625 * 0.01
    weight_decay = 0

    # For deep4 they should be:
    # lr = 1 * 0.01
    # weight_decay = 0.5 * 0.001

    batch_size = 8
    n_epochs = 100

    clf = EEGClassifier(
        model,
        criterion=torch.nn.NLLLoss,
        optimizer=torch.optim.AdamW,
        train_split=predefined_split(
            valid_set),  # using valid_set for validation
        optimizer__lr=lr,
        optimizer__weight_decay=weight_decay,
        batch_size=batch_size,
        callbacks=[
            "accuracy",
            ("lr_scheduler",
             LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ],
        device=device,
    )
    # Model training for a specified number of epochs. `y` is None as it is already supplied
    # in the dataset.
    clf.fit(train_set, y=None, epochs=n_epochs)

    ######################################################################
    # Plot Results
    # ------------
    #

    ######################################################################
    # Now we use the history stored by Skorch throughout training to plot
    # accuracy and loss curves.
    #

    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    import pandas as pd
    # Extract loss and accuracy values for plotting from history object
    results_columns = [
        'train_loss', 'valid_loss', 'train_accuracy', 'valid_accuracy'
    ]
    df = pd.DataFrame(clf.history[:, results_columns],
                      columns=results_columns,
                      index=clf.history[:, 'epoch'])

    # get percent of misclass for better visual comparison to loss
    df = df.assign(train_misclass=100 - 100 * df.train_accuracy,
                   valid_misclass=100 - 100 * df.valid_accuracy)

    plt.style.use('seaborn')
    fig, ax1 = plt.subplots(figsize=(8, 3))
    df.loc[:, ['train_loss', 'valid_loss']].plot(ax=ax1,
                                                 style=['-', ':'],
                                                 marker='o',
                                                 color='tab:blue',
                                                 legend=False,
                                                 fontsize=14)

    ax1.tick_params(axis='y', labelcolor='tab:blue', labelsize=14)
    ax1.set_ylabel("Loss", color='tab:blue', fontsize=14)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    df.loc[:, ['train_misclass', 'valid_misclass']].plot(ax=ax2,
                                                         style=['-', ':'],
                                                         marker='o',
                                                         color='tab:red',
                                                         legend=False)
    ax2.tick_params(axis='y', labelcolor='tab:red', labelsize=14)
    ax2.set_ylabel("Misclassification Rate [%]", color='tab:red', fontsize=14)
    ax2.set_ylim(ax2.get_ylim()[0], 85)  # make some room for legend
    ax1.set_xlabel("Epoch", fontsize=14)

    # where some data has already been plotted to ax
    handles = []
    handles.append(
        Line2D([0], [0],
               color='black',
               linewidth=1,
               linestyle='-',
               label='Train'))
    handles.append(
        Line2D([0], [0],
               color='black',
               linewidth=1,
               linestyle=':',
               label='Valid'))
    plt.legend(handles, [h.get_label() for h in handles], fontsize=14)
    plt.tight_layout()

    # plt.show()

    return df
Ejemplo n.º 8
0
train_bal_acc = EpochScoring(scoring='balanced_accuracy',
                             on_train=True,
                             name='train_bal_acc',
                             lower_is_better=False)
valid_bal_acc = EpochScoring(scoring='balanced_accuracy',
                             on_train=False,
                             name='valid_bal_acc',
                             lower_is_better=False)
callbacks = [('train_bal_acc', train_bal_acc),
             ('valid_bal_acc', valid_bal_acc)]

clf = EEGClassifier(
    model,
    criterion=torch.nn.CrossEntropyLoss,
    optimizer=torch.optim.Adam,
    train_split=predefined_split(valid_set),  # using valid_set for validation
    optimizer__lr=lr,
    batch_size=batch_size,
    callbacks=callbacks,
    device=device)
# Model training for a specified number of epochs. `y` is None as it is already
# supplied in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)

######################################################################
# Plot results
# ------------
#

######################################################################
# We use the history stored by Skorch during training to plot the performance of
Ejemplo n.º 9
0
if re.compile('/Users/long/').match(location):
    my_callbacks = [
        "accuracy",
        ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ('on_epoch_begin_callback', on_epoch_begin_callback),
        ('on_batch_end_callback', on_batch_end_callback),
    ]
elif re.compile('/content/drive').match(location):
    my_callbacks = [
        "accuracy",
        ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
    ]

clf = EEGClassifier(
    net,
    #criterion=torch.nn.NLLLoss,  #torch.nn.NLLLoss/CrossEntropyLoss
    criterion=torch.nn.CrossEntropyLoss,
    optimizer=torch.optim.Adam,  #optimizer=torch.optim.AdamW,
    train_split=predefined_split(
        valid_set
    ),  # using valid_set for validation; None means no validate:both train and test on training dataset.
    optimizer__lr=lr,
    optimizer__weight_decay=weight_decay,
    batch_size=batch_size,
    callbacks=my_callbacks,
    device=device,
)
# Model training for a specified number of epochs. `y` is None as it is already supplied
# in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)
Ejemplo n.º 10
0
batch_size = 64
n_epochs = 100

from skorch.callbacks import Checkpoint, EarlyStopping, EpochScoring
early_stopping = EarlyStopping(patience=30)
cp = Checkpoint(dirname='', f_criterion=None, f_optimizer=None, f_history=None)


clf = EEGClassifier(
    model,
    # criterion=torch.nn.NLLLoss,
    criterion=torch.nn.CrossEntropyLoss,
    optimizer=torch.optim.AdamW,
    train_split=predefined_split(valid_set),  # using valid_set for validation
    optimizer__lr=lr,
    optimizer__weight_decay=weight_decay,
    batch_size=batch_size,
    callbacks=[
        "accuracy", ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),('cp', cp),('patience', early_stopping)
    ],
    device=device,
)
# Model training for a specified number of epochs. `y` is None as it is already supplied
# in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)
clf.load_params(checkpoint=cp)  # Load the model with the lowest valid_loss

import os
os.remove('./params.pt')  # Delete parameters file

######################################################################
def test_variable_length_trials_cropped_decoding():
    cuda = False
    set_random_seeds(seed=20210726, cuda=cuda)

    # create fake tuh abnormal dataset
    tuh = _TUHAbnormalMock(path='')
    # fake variable length trials by cropping first recording
    splits = tuh.split([[i] for i in range(len(tuh.datasets))])
    preprocess(
        concat_ds=splits['0'],
        preprocessors=[
            Preprocessor('crop', tmax=300),
        ],
    )
    variable_tuh = BaseConcatDataset(
        [splits[str(i)] for i in range(len(tuh.datasets))])
    # make sure we actually have different length trials
    assert any(np.diff([ds.raw.n_times for ds in variable_tuh.datasets]) != 0)

    # create windows
    variable_tuh_windows = create_fixed_length_windows(
        concat_ds=variable_tuh,
        window_size_samples=1000,
        window_stride_samples=1000,
        drop_last_window=False,
        mapping={
            True: 1,
            False: 0
        },
    )

    # create train and valid set
    splits = variable_tuh_windows.split(
        [[i] for i in range(len(variable_tuh_windows.datasets))])
    variable_tuh_windows_train = BaseConcatDataset(
        [splits[str(i)] for i in range(len(tuh.datasets) - 1)])
    variable_tuh_windows_valid = BaseConcatDataset(
        [splits[str(len(tuh.datasets) - 1)]])
    for x, y, ind in variable_tuh_windows_train:
        break
    train_split = predefined_split(variable_tuh_windows_valid)

    # initialize a model
    model = ShallowFBCSPNet(
        in_chans=x.shape[0],
        n_classes=len(tuh.description.pathological.unique()),
    )
    to_dense_prediction_model(model)
    if cuda:
        model.cuda()

    # create and train a classifier
    clf = EEGClassifier(
        model,
        cropped=True,
        criterion=CroppedLoss,
        criterion__loss_function=torch.nn.functional.nll_loss,
        optimizer=torch.optim.Adam,
        batch_size=32,
        callbacks=['accuracy'],
        train_split=train_split,
    )
    clf.fit(variable_tuh_windows_train, y=None, epochs=3)

    # make sure it does what we expect
    np.testing.assert_allclose(
        clf.history[:, 'train_loss'],
        np.array([
            0.689495325088501,
            0.1353449523448944,
            0.006638816092163324,
        ]),
        rtol=1e-1,
        atol=1e-1,
    )

    np.testing.assert_allclose(
        clf.history[:, 'valid_loss'],
        np.array([
            2.925871,
            3.611423,
            4.23494,
        ]),
        rtol=1e-1,
        atol=1e-1,
    )
	args.input_window_samples)[2]

valid_set, train_set = windowing_data(dataset, args)
del dataset


# =============================================================================
# Training the model
# =============================================================================
clf = EEGClassifier(
	model,
	cropped=True,
	criterion=CroppedLoss,
	criterion__loss_function=torch.nn.functional.nll_loss,
	optimizer=torch.optim.AdamW,
	train_split=predefined_split(valid_set),
	optimizer__lr=args.lr,
	optimizer__weight_decay=args.wd,
	iterator_train__shuffle=True,
	batch_size=args.batch_size,
	callbacks=['accuracy'],
	device=args.device,
)

# Model training for a specified number of epochs. "y" is None as it is already
# supplied in the dataset.
clf.fit(train_set, y=None, epochs=args.n_epochs)


# =============================================================================
# Storing the results into a dictionary and saving
# =============================================================================
Ejemplo n.º 13
0
                         name='train_acc',
                         lower_is_better=False)
valid_acc = EpochScoring(scoring='accuracy',
                         on_train=False,
                         name='valid_acc',
                         lower_is_better=False)
callbacks = [('cp', cp), ('patience', early_stopping),
             ('train_acc', train_acc), ('valid_acc', valid_acc)]

clf = EEGClassifier(model,
                    criterion=torch.nn.BCEWithLogitsLoss,
                    optimizer=torch.optim.Adam,
                    max_epochs=n_epochs,
                    iterator_train__shuffle=False,
                    iterator_train__sampler=train_sampler,
                    iterator_valid__sampler=valid_sampler,
                    iterator_train__num_workers=num_workers,
                    iterator_valid__num_workers=num_workers,
                    train_split=predefined_split(splitted['valid']),
                    optimizer__lr=lr,
                    batch_size=batch_size,
                    callbacks=callbacks,
                    device=device)
# Model training for a specified number of epochs. `y` is None as it is already
# supplied in the dataset.
clf.fit(splitted['train'], y=None)
clf.load_params(checkpoint=cp)  # Load the model with the lowest valid_loss

os.remove('./params.pt')  # Delete parameters file

######################################################################
# Visualizing the results
Ejemplo n.º 14
0
    preload=True,
)

splitted = windows_dataset.split('session')
train_set = splitted['session_T']
valid_set = splitted['session_E']

clf = EEGClassifier(
    model,
    cropped=False,
    criterion=torch.nn.NLLLoss,
    optimizer=torch.optim.AdamW,
    train_split=predefined_split(valid_set),
    optimizer__lr=lr,
    optimizer__weight_decay=weight_decay,
    iterator_train__shuffle=True,
    batch_size=batch_size,
    callbacks=[
        "accuracy",
        # seems n_epochs -1 leads to desired behavior of lr=0 after end of training?
        ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
    ],
    device=device,
)

clf.fit(windows_dataset, y=None, epochs=n_epochs)

###############################################################################
# Plot Results

ignore_keys = [
Ejemplo n.º 15
0
def exp(subject_id):
    test_subj = np.r_[subject_id]
    print('test subj:' + str(test_subj))
    train_subj = np.setdiff1d(np.r_[1:11], test_subj)

    train_set = BaseConcatDataset([splitted[ids] for ids in train_subj])
    valid_set = BaseConcatDataset([splitted[ids] for ids in test_subj])

    # #
    model = ShallowFBCSPNet(
        n_chans,
        n_classes,
        input_window_samples=input_window_samples,
        final_conv_length=30,
    )

    # #
    # embedding_net = Deep4Net_origin(4, 22, input_window_samples)
    # model = FcClfNet(embedding_net)

    print(model)

    # Send model to GPU
    if cuda:
        model.cuda()
    from braindecode.models.util import to_dense_prediction_model, get_output_shape
    to_dense_prediction_model(model)
    ######################################################################
    # Training
    # --------
    #

    ######################################################################
    # In difference to trialwise decoding, we now should supply
    # ``cropped=True`` to the EEGClassifier, and ``CroppedLoss`` as the
    # criterion, as well as ``criterion__loss_function`` as the loss function
    # applied to the meaned predictions.
    #

    ######################################################################
    # .. note::
    #    In this tutorial, we use some default parameters that we
    #    have found to work well for motor decoding, however we strongly
    #    encourage you to perform your own hyperparameter optimization using
    #    cross validation on your training data.
    #

    from skorch.callbacks import LRScheduler
    from skorch.helper import predefined_split

    from braindecode import EEGClassifier
    from braindecode.training.losses import CroppedLoss
    from braindecode.training.scoring import trial_preds_from_window_preds

    # # These values we found good for shallow network:
    lr = 0.0625 * 0.01
    weight_decay = 0

    # # For deep4 they should be:
    # lr = 1 * 0.01
    # weight_decay = 0.5 * 0.001

    batch_size = 400
    n_epochs = 100

    clf = EEGClassifier(
        model,
        cropped=True,
        criterion=CroppedLoss,
        criterion__loss_function=torch.nn.functional.nll_loss,
        optimizer=torch.optim.AdamW,
        train_split=predefined_split(valid_set),
        optimizer__lr=lr,
        optimizer__weight_decay=weight_decay,
        iterator_train__shuffle=True,
        batch_size=batch_size,
        callbacks=[
            "accuracy",
            ("lr_scheduler",
             LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ],
        device=device,
    )
    # Model training for a specified number of epochs. `y` is None as it is already supplied
    # in the dataset.
    clf.fit(train_set, y=None, epochs=n_epochs)

    ######################################################################
    # Plot Results
    # ------------
    #

    ######################################################################
    # This is again the same code as in trialwise decoding.
    #
    # .. note::
    #     Note that we drop further in the classification error and
    #     loss as in the trialwise decoding tutorial.
    #

    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    import pandas as pd
    # Extract loss and accuracy values for plotting from history object
    results_columns = [
        'train_loss', 'valid_loss', 'train_accuracy', 'valid_accuracy'
    ]
    df = pd.DataFrame(clf.history[:, results_columns],
                      columns=results_columns,
                      index=clf.history[:, 'epoch'])

    # get percent of misclass for better visual comparison to loss
    df = df.assign(train_misclass=100 - 100 * df.train_accuracy,
                   valid_misclass=100 - 100 * df.valid_accuracy)

    plt.style.use('seaborn')
    fig, ax1 = plt.subplots(figsize=(8, 3))
    df.loc[:, ['train_loss', 'valid_loss']].plot(ax=ax1,
                                                 style=['-', ':'],
                                                 marker='o',
                                                 color='tab:blue',
                                                 legend=False,
                                                 fontsize=14)

    ax1.tick_params(axis='y', labelcolor='tab:blue', labelsize=14)
    ax1.set_ylabel("Loss", color='tab:blue', fontsize=14)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    df.loc[:, ['train_misclass', 'valid_misclass']].plot(ax=ax2,
                                                         style=['-', ':'],
                                                         marker='o',
                                                         color='tab:red',
                                                         legend=False)
    ax2.tick_params(axis='y', labelcolor='tab:red', labelsize=14)
    ax2.set_ylabel("Misclassification Rate [%]", color='tab:red', fontsize=14)
    ax2.set_ylim(ax2.get_ylim()[0], 85)  # make some room for legend
    ax1.set_xlabel("Epoch", fontsize=14)

    # where some data has already been plotted to ax
    handles = []
    handles.append(
        Line2D([0], [0],
               color='black',
               linewidth=1,
               linestyle='-',
               label='Train'))
    handles.append(
        Line2D([0], [0],
               color='black',
               linewidth=1,
               linestyle=':',
               label='Valid'))
    plt.legend(handles, [h.get_label() for h in handles], fontsize=14)
    plt.tight_layout()

    return df
Ejemplo n.º 16
0
def exp(subject_id):

    dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=subject_id)

    from braindecode.datautil.preprocess import exponential_moving_standardize
    from braindecode.datautil.preprocess import MNEPreproc, NumpyPreproc, preprocess

    low_cut_hz = 0.  # low cut frequency for filtering
    high_cut_hz = 38.  # high cut frequency for filtering
    # Parameters for exponential moving standardization
    factor_new = 1e-3
    init_block_size = 1000

    preprocessors = [
        # keep only EEG sensors
        MNEPreproc(fn='pick_types', eeg=True, meg=False, stim=False),
        # convert from volt to microvolt, directly modifying the numpy array
        NumpyPreproc(fn=lambda x: x * 1e6),
        # bandpass filter
        MNEPreproc(fn='filter', l_freq=low_cut_hz, h_freq=high_cut_hz),
        # exponential moving standardization
        # NumpyPreproc(fn=exponential_moving_standardize, factor_new=factor_new,
        #     init_block_size=init_block_size)
    ]

    # Transform the data
    preprocess(dataset, preprocessors)

    ######################################################################
    # Create model and compute windowing parameters
    # ---------------------------------------------
    #

    ######################################################################
    # In contrast to trialwise decoding, we first have to create the model
    # before we can cut the dataset into windows. This is because we need to
    # know the receptive field of the network to know how large the window
    # stride should be.
    #

    ######################################################################
    # We first choose the compute/input window size that will be fed to the
    # network during training This has to be larger than the networks
    # receptive field size and can otherwise be chosen for computational
    # efficiency (see explanations in the beginning of this tutorial). Here we
    # choose 1000 samples, which are 4 seconds for the 250 Hz sampling rate.
    #

    input_window_samples = 1000

    ######################################################################
    # Now we create the model. To enable it to be used in cropped decoding
    # efficiently, we manually set the length of the final convolution layer
    # to some length that makes the receptive field of the ConvNet smaller
    # than ``input_window_samples`` (see ``final_conv_length=30`` in the model
    # definition).
    #

    import torch
    from braindecode.util import set_random_seeds
    from braindecode.models import ShallowFBCSPNet, Deep4Net

    cuda = torch.cuda.is_available(
    )  # check if GPU is available, if True chooses to use it
    device = 'cuda:1' if cuda else 'cpu'
    if cuda:
        torch.backends.cudnn.benchmark = True
    seed = 20190706  # random seed to make results reproducible
    # Set random seed to be able to reproduce results
    set_random_seeds(seed=seed, cuda=cuda)

    n_classes = 4
    # Extract number of chans from dataset
    n_chans = dataset[0][0].shape[0]

    # model = Deep4Net(
    #     n_chans,
    #     n_classes,
    #     input_window_samples=input_window_samples,
    #     final_conv_length="auto",
    # )
    #
    #
    #
    # embedding_net = Deep4Net_origin(4, 22, input_window_samples)
    # model = FcClfNet(embedding_net)

    model = ShallowFBCSPNet(
        n_chans,
        n_classes,
        input_window_samples=input_window_samples,
        final_conv_length=30,
    )

    print(model)

    # Send model to GPU
    if cuda:
        model.cuda(device)

    ######################################################################
    # And now we transform model with strides to a model that outputs dense
    # prediction, so we can use it to obtain predictions for all
    # crops.
    #

    from braindecode.models.util import to_dense_prediction_model, get_output_shape
    to_dense_prediction_model(model)

    n_preds_per_input = get_output_shape(model, n_chans,
                                         input_window_samples)[2]
    print("n_preds_per_input : ", n_preds_per_input)
    print(model)

    ######################################################################
    # Cut the data into windows
    # -------------------------
    #

    ######################################################################
    # In contrast to trialwise decoding, we have to supply an explicit window size and window stride to the
    # ``create_windows_from_events`` function.
    #

    import numpy as np
    from braindecode.datautil.windowers import create_windows_from_events

    trial_start_offset_seconds = -0.5
    # Extract sampling frequency, check that they are same in all datasets
    sfreq = dataset.datasets[0].raw.info['sfreq']
    assert all([ds.raw.info['sfreq'] == sfreq for ds in dataset.datasets])

    # Calculate the trial start offset in samples.
    trial_start_offset_samples = int(trial_start_offset_seconds * sfreq)

    # Create windows using braindecode function for this. It needs parameters to define how
    # trials should be used.
    windows_dataset = create_windows_from_events(
        dataset,
        trial_start_offset_samples=trial_start_offset_samples,
        trial_stop_offset_samples=0,
        window_size_samples=input_window_samples,
        window_stride_samples=n_preds_per_input,
        drop_last_window=False,
        preload=True,
    )

    ######################################################################
    # Split the dataset
    # -----------------
    #
    # This code is the same as in trialwise decoding.
    #

    from braindecode.datasets.base import BaseConcatDataset
    splitted = windows_dataset.split('session')

    train_set = splitted['session_T']
    valid_set = splitted['session_E']

    ######################################################################
    # In difference to trialwise decoding, we now should supply
    # ``cropped=True`` to the EEGClassifier, and ``CroppedLoss`` as the
    # criterion, as well as ``criterion__loss_function`` as the loss function
    # applied to the meaned predictions.
    #

    ######################################################################
    # .. note::
    #    In this tutorial, we use some default parameters that we
    #    have found to work well for motor decoding, however we strongly
    #    encourage you to perform your own hyperparameter optimization using
    #    cross validation on your training data.
    #

    from skorch.callbacks import LRScheduler
    from skorch.helper import predefined_split

    from braindecode import EEGClassifier
    from braindecode.training.losses import CroppedLoss
    from braindecode.training.scoring import trial_preds_from_window_preds

    # # These values we found good for shallow network:
    lr = 0.0625 * 0.01
    weight_decay = 0

    # # For deep4 they should be:
    # lr = 1 * 0.01
    # weight_decay = 0.5 * 0.001
    #
    batch_size = 8
    n_epochs = 100

    clf = EEGClassifier(
        model,
        cropped=True,
        criterion=CroppedLoss,
        criterion__loss_function=torch.nn.functional.nll_loss,
        optimizer=torch.optim.AdamW,
        train_split=predefined_split(valid_set),
        optimizer__lr=lr,
        optimizer__weight_decay=weight_decay,
        iterator_train__shuffle=True,
        batch_size=batch_size,
        callbacks=[
            "accuracy",
            ("lr_scheduler",
             LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ],
        device=device,
    )
    # Model training for a specified number of epochs. `y` is None as it is already supplied
    # in the dataset.
    clf.fit(train_set, y=None, epochs=n_epochs)

    ######################################################################
    # Plot Results
    # ------------
    #

    ######################################################################
    # This is again the same code as in trialwise decoding.
    #
    # .. note::
    #     Note that we drop further in the classification error and
    #     loss as in the trialwise decoding tutorial.
    #

    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D
    import pandas as pd
    # Extract loss and accuracy values for plotting from history object
    results_columns = [
        'train_loss', 'valid_loss', 'train_accuracy', 'valid_accuracy'
    ]
    df = pd.DataFrame(clf.history[:, results_columns],
                      columns=results_columns,
                      index=clf.history[:, 'epoch'])

    # get percent of misclass for better visual comparison to loss
    df = df.assign(train_misclass=100 - 100 * df.train_accuracy,
                   valid_misclass=100 - 100 * df.valid_accuracy)

    plt.style.use('seaborn')
    fig, ax1 = plt.subplots(figsize=(8, 3))
    df.loc[:, ['train_loss', 'valid_loss']].plot(ax=ax1,
                                                 style=['-', ':'],
                                                 marker='o',
                                                 color='tab:blue',
                                                 legend=False,
                                                 fontsize=14)

    ax1.tick_params(axis='y', labelcolor='tab:blue', labelsize=14)
    ax1.set_ylabel("Loss", color='tab:blue', fontsize=14)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    df.loc[:, ['train_misclass', 'valid_misclass']].plot(ax=ax2,
                                                         style=['-', ':'],
                                                         marker='o',
                                                         color='tab:red',
                                                         legend=False)
    ax2.tick_params(axis='y', labelcolor='tab:red', labelsize=14)
    ax2.set_ylabel("Misclassification Rate [%]", color='tab:red', fontsize=14)
    ax2.set_ylim(ax2.get_ylim()[0], 85)  # make some room for legend
    ax1.set_xlabel("Epoch", fontsize=14)

    # where some data has already been plotted to ax
    handles = []
    handles.append(
        Line2D([0], [0],
               color='black',
               linewidth=1,
               linestyle='-',
               label='Train'))
    handles.append(
        Line2D([0], [0],
               color='black',
               linewidth=1,
               linestyle=':',
               label='Valid'))
    plt.legend(handles, [h.get_label() for h in handles], fontsize=14)
    plt.tight_layout()

    return df
# For deep4 they should be:
# lr = 1 * 0.01
# weight_decay = 0.5 * 0.001

batch_size = 64
n_epochs = 4

clf = EEGClassifier(
    model,
    cropped=True,
    criterion=CroppedLoss,
    criterion__loss_function=torch.nn.functional.nll_loss,
    optimizer=torch.optim.AdamW,
    train_split=predefined_split(valid_set),
    optimizer__lr=lr,
    optimizer__weight_decay=weight_decay,
    iterator_train__shuffle=True,
    batch_size=batch_size,
    callbacks=[
        "accuracy", ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
    ],
    device=device,
)
# Model training for a specified number of epochs. `y` is None as it is already supplied
# in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)


######################################################################
# Plot Results
# ------------
lr = 0.0625 * 0.01
weight_decay = 0

batch_size = 64
n_epochs = 4

clf = EEGClassifier(
    model,
    iterator_train=
    AugmentedDataLoader,  # This tells EEGClassifier to use a custom DataLoader
    iterator_train__transforms=transforms,  # This sets the augmentations to use
    criterion=torch.nn.NLLLoss,
    optimizer=torch.optim.AdamW,
    train_split=predefined_split(valid_set),  # using valid_set for validation
    optimizer__lr=lr,
    optimizer__weight_decay=weight_decay,
    batch_size=batch_size,
    callbacks=[
        "accuracy",
        ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
    ],
    device=device,
)
# Model training for a specified number of epochs. `y` is None as it is already
# supplied in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)

######################################################################
# Manually composing Transforms
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ejemplo n.º 19
0
def test_cropped_decoding():
    # 5,6,7,10,13,14 are codes for executed and imagined hands/feet
    subject_id = 1
    event_codes = [5, 6, 9, 10, 13, 14]

    # This will download the files if you don't have them yet,
    # and then return the paths to the files.
    physionet_paths = mne.datasets.eegbci.load_data(
        subject_id, event_codes, update_path=False
    )

    # Load each of the files
    parts = [
        mne.io.read_raw_edf(
            path, preload=True, stim_channel="auto", verbose="WARNING"
        )
        for path in physionet_paths
    ]

    # Concatenate them
    raw = concatenate_raws(parts)

    # Find the events in this dataset
    events, _ = mne.events_from_annotations(raw)
    # Use only EEG channels
    eeg_channel_inds = mne.pick_types(
        raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads"
    )

    # Extract trials, only using EEG channels
    epoched = mne.Epochs(
        raw,
        events,
        dict(hands=2, feet=3),
        tmin=1,
        tmax=4.1,
        proj=False,
        picks=eeg_channel_inds,
        baseline=None,
        preload=True,
    )
    # Convert data from volt to millivolt
    # Pytorch expects float32 for input and int64 for labels.
    X = (epoched.get_data() * 1e6).astype(np.float32)
    y = (epoched.events[:, 2] - 2).astype(np.int64)  # 2,3 -> 0,1

    # Set if you want to use GPU
    # You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
    cuda = False
    set_random_seeds(seed=20170629, cuda=cuda)

    # This will determine how many crops are processed in parallel
    input_time_length = 450
    n_classes = 2
    in_chans = X.shape[1]
    # final_conv_length determines the size of the receptive field of the ConvNet
    model = ShallowFBCSPNet(
        in_chans=in_chans,
        n_classes=n_classes,
        input_time_length=input_time_length,
        final_conv_length=12,
    )
    to_dense_prediction_model(model)

    if cuda:
        model.cuda()

    # Perform forward pass to determine how many outputs per input
    n_preds_per_input = get_output_shape(model, in_chans, input_time_length)[2]

    train_set = CroppedXyDataset(X[:60], y[:60],
                                 input_time_length=input_time_length,
                                 n_preds_per_input=n_preds_per_input)
    valid_set = CroppedXyDataset(X[60:], y=y[60:],
                                 input_time_length=input_time_length,
                                 n_preds_per_input=n_preds_per_input)
    train_split = predefined_split(valid_set)

    clf = EEGClassifier(
        model,
        cropped=True,
        criterion=CroppedLoss,
        criterion__loss_function=torch.nn.functional.nll_loss,
        optimizer=optim.Adam,
        train_split=train_split,
        batch_size=32,
        callbacks=['accuracy'],
    )

    clf.fit(train_set, y=None, epochs=4)

    np.testing.assert_allclose(
        clf.history[:, 'train_loss'],
        np.array(
            [
                1.455306,
                1.455934,
                1.210563,
                1.065806
            ]
        ),
        rtol=1e-4,
        atol=1e-5,
    )

    np.testing.assert_allclose(
        clf.history[:, 'valid_loss'],
        np.array(
            [
                2.547288,
                1.51785,
                1.394036,
                1.064355
            ]
        ),
        rtol=1e-4,
        atol=1e-4,
    )
    np.testing.assert_allclose(
        clf.history[:, 'train_accuracy'],
        np.array(
            [
                0.5,
                0.5,
                0.5,
                0.533333
            ]
        ),
        rtol=1e-4,
        atol=1e-5,
    )
    np.testing.assert_allclose(
        clf.history[:, 'valid_accuracy'],
        np.array(
            [
                0.533333,
                0.466667,
                0.533333,
                0.5
            ]
        ),
        rtol=1e-4,
        atol=1e-5,
    )
weight_decay = 0

# For deep4 they should be:
# lr = 1 * 0.01
# weight_decay = 0.5 * 0.001

batch_size = 64
n_epochs = 4

clf = EEGClassifier(
    model,
    criterion=torch.nn.NLLLoss,
    optimizer=torch.optim.AdamW,
    train_split=predefined_split(valid_set),  # using valid_set for validation
    optimizer__lr=lr,
    optimizer__weight_decay=weight_decay,
    batch_size=batch_size,
    callbacks=[
        "accuracy",
        ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
    ],
    device=device,
)
# Model training for a specified number of epochs. `y` is None as it is already supplied
# in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)

######################################################################
# Plot Results
# ------------
#
                             name='train_bal_acc',
                             lower_is_better=False)
valid_bal_acc = EpochScoring(scoring='balanced_accuracy',
                             on_train=False,
                             name='valid_bal_acc',
                             lower_is_better=False)
callbacks = [('train_bal_acc', train_bal_acc),
             ('valid_bal_acc', valid_bal_acc)]

clf = EEGClassifier(
    model,
    criterion=torch.nn.CrossEntropyLoss,
    criterion__weight=torch.Tensor(class_weights).to(device),
    optimizer=torch.optim.Adam,
    iterator_train__shuffle=False,
    iterator_train__sampler=train_sampler,
    iterator_valid__sampler=valid_sampler,
    train_split=predefined_split(valid_set),  # using valid_set for validation
    optimizer__lr=lr,
    batch_size=batch_size,
    callbacks=callbacks,
    device=device)
# Model training for a specified number of epochs. `y` is None as it is already
# supplied in the dataset.
clf.fit(train_set, y=None, epochs=n_epochs)

######################################################################
# Plot results
# ------------
#
# We use the history stored by Skorch during training to plot the performance of
Ejemplo n.º 22
0
def train(subject_id):

    subject_range = [subject_id]
    ##### subject_range = [x for x in range(1, 10)]

    dataset = MOABBDataset(dataset_name="BNCI2014001",
                           subject_ids=subject_range)

    ######################################################################
    # Preprocessing

    low_cut_hz = 4.  # low cut frequency for filtering
    high_cut_hz = 38.  # high cut frequency for filtering
    # Parameters for exponential moving standardization
    factor_new = 1e-3
    init_block_size = 1000

    preprocessors = [
        Preprocessor('pick_types', eeg=True, eog=False, meg=False,
                     stim=False),  # Keep EEG sensors
        Preprocessor(lambda x: x * 1e6),  # Convert from V to uV
        Preprocessor('filter', l_freq=low_cut_hz,
                     h_freq=high_cut_hz),  # Bandpass filter
        Preprocessor('set_eeg_reference',
                     ref_channels='average',
                     ch_type='eeg'),
        Preprocessor('resample', sfreq=125),

        ## Preprocessor(exponential_moving_standardize,  # Exponential moving standardization
        ## factor_new=factor_new, init_block_size=init_block_size)
        ## Preprocessor('pick_channels', ch_names=short_ch_names, ordered=True),
    ]

    # Transform the data
    preprocess(dataset, preprocessors)

    ######################################################################
    # Cut Compute Windows
    # ~~~~~~~~~~~~~~~~~~~

    trial_start_offset_seconds = -0.0
    # Extract sampling frequency, check that they are same in all datasets
    sfreq = dataset.datasets[0].raw.info['sfreq']
    assert all([ds.raw.info['sfreq'] == sfreq for ds in dataset.datasets])
    # Calculate the trial start offset in samples.
    trial_start_offset_samples = int(trial_start_offset_seconds * sfreq)

    # Create windows using braindecode function for this. It needs parameters to define how
    # trials should be used.
    windows_dataset = create_windows_from_events(
        dataset,
        # picks=["Fz", "FC3", "FC1", "FCz", "FC2", "FC4", "C5", "C3", "C1", "Cz", "C2", "C4", "C6", "CP3", "CP1", "CPz", "CP2", "CP4", "P1", "Pz", "P2", "POz"],
        trial_start_offset_samples=trial_start_offset_samples,
        trial_stop_offset_samples=0,
        preload=True,
    )

    ######################################################################
    # Split dataset into train and valid

    splitted = windows_dataset.split('session')
    train_set = splitted['session_T']
    valid_set = splitted['session_E']

    ######################################################################
    # Create model

    cuda = torch.cuda.is_available(
    )  # check if GPU is available, if True chooses to use it
    device = 'cuda' if cuda else 'cpu'
    if cuda:
        torch.backends.cudnn.benchmark = True
    seed = 20200220  # random seed to make results reproducible
    # Set random seed to be able to reproduce results
    set_random_seeds(seed=seed, cuda=cuda)

    n_classes = 4
    # Extract number of chans and time steps from dataset
    n_chans = train_set[0][0].shape[0]
    input_window_samples = train_set[0][0].shape[1]

    model = ShallowFBCSPNet(n_chans,
                            n_classes,
                            input_window_samples=input_window_samples,
                            final_conv_length='auto')
    """
	model = EEGNetv1(
			n_chans,
			n_classes,
			input_window_samples=input_window_samples,
			final_conv_length="auto",
			pool_mode="mean",
			second_kernel_size=(2, 32),
			third_kernel_size=(8, 4),
			drop_prob=0.25)
	"""
    """
	model = HybridNet(n_chans, n_classes,
					input_window_samples=input_window_samples)
	"""
    """
	model = TCN(n_chans, n_classes,
				n_blocks=6,
				n_filters=32,
				kernel_size=9,
				drop_prob=0.0,
				add_log_softmax=True)
	"""
    """
	model = EEGNetv4(n_chans,
					n_classes,
					input_window_samples=input_window_samples,
					final_conv_length="auto",
					pool_mode="mean",
					F1=8,
					D=2,
					F2=16,  # usually set to F1*D (?)
					kernel_length=64,
					third_kernel_size=(8, 4),
					drop_prob=0.2)
	"""

    if cuda:
        model.cuda()

    ######################################################################
    # Training

    # These values we found good for shallow network:
    lr = 0.01  # 0.0625 * 0.01
    weight_decay = 0.0005

    # For deep4 they should be:
    # lr = 1 * 0.01
    # weight_decay = 0.5 * 0.001

    batch_size = 64
    n_epochs = 80

    clf = EEGClassifier(
        model,
        criterion=torch.nn.NLLLoss,
        optimizer=torch.optim.SGD,  #AdamW,
        train_split=predefined_split(
            valid_set),  # using valid_set for validation
        optimizer__lr=lr,
        optimizer__momentum=0.9,
        optimizer__weight_decay=weight_decay,
        batch_size=batch_size,
        callbacks=[
            "accuracy",  #("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)),
        ],
        device=device,
    )
    # Model training for a specified number of epochs. `y` is None as it is already supplied
    # in the dataset.
    clf.fit(train_set, y=None, epochs=n_epochs)

    results_columns = [
        'train_loss', 'valid_loss', 'train_accuracy', 'valid_accuracy'
    ]
    df = pd.DataFrame(clf.history[:, results_columns],
                      columns=results_columns,
                      index=clf.history[:, 'epoch'])

    val_accs = df['valid_accuracy'].values
    max_val_acc = 100.0 * np.max(val_accs)

    return max_val_acc