Ejemplo n.º 1
0
def test_pull_label():
    def _img_to_labels(img, voxel, low=None, up=255):
        img_T1 = sitk.GetImageFromArray(np.squeeze(img), isVector=False)
        img_T1_255 = sitk.Cast(sitk.RescaleIntensity(img_T1), sitk.sitkUInt8)
        seed = (int(voxel[2]), int(voxel[1]), int(voxel[0]))
        seg = sitk.Image(img_T1.GetSize(), sitk.sitkUInt8)
        seg.CopyInformation(img_T1)
        seg[seed] = 1
        seg = sitk.BinaryDilate(seg, 1)
        seg_con = sitk.ConnectedThreshold(img_T1_255,
                                          seedList=[seed],
                                          lower=int(np.round(low)),
                                          upper=up)
        vectorRadius = (1, 1, 1)
        kernel = sitk.sitkBall
        seg_clean = sitk.BinaryMorphologicalClosing(seg_con, vectorRadius,
                                                    kernel)
        labels = sitk.GetArrayFromImage(seg_clean)
        return labels

    url = "s3://mouse-light-viz/precomputed_volumes/brain1_lowres"
    ngl = NeuroglancerSession(url, mip=1, url_segments=url + "_segments")
    # ngl_seg = NeuroglancerSession(url, mip=1, url_segments=url + "_segments")
    img, bounds, voxel = ngl.pull_chunk(2, 300)
    label = _img_to_labels(img, voxel, low=11)
    # ngl_seg.push(label, bounds)
    # label2 = ngl_seg.pull_bounds_seg(bounds)
    # assert np.all(np.squeeze(np.array(label) == np.squeeze(np.array(label2))))
    assert True
Ejemplo n.º 2
0
def test_set_url_segments(vars_local):
    """Tests setting a segmentation url ."""
    _, url, url_segments, mip, seg_id, v_id = vars_local
    sess = NeuroglancerSession(url=url, mip=mip)
    sess.set_url_segments(url_segments)
    assert sess.url_segments == url_segments
    assert len(sess.cv_segments.scales) > 0
Ejemplo n.º 3
0
def test_session_bad_urls(vars_local):
    """Tests that initializing a NeuroglancerSession object by passing bad urls isn't valid."""
    _, url, url_segments, mip, seg_id, v_id = vars_local
    url_bad = url + "0"  # bad url
    url_segments_bad = url_segments + "0"  # bad url
    with pytest.raises(InfoUnavailableError):
        sess = NeuroglancerSession(url_bad)
    with pytest.raises(InfoUnavailableError):
        sess = NeuroglancerSession(url, url_segments=url_segments_bad)
Ejemplo n.º 4
0
def test_tubes_from_paths():
    """Tests that, given valid paths, valid tubes are created."""
    sess = NeuroglancerSession(url, 0, url_seg)
    img, bbox, verts = sess.pull_voxel(2, 300,
                                       radius=5)  # A valid bbox with data.
    G_paths = sess.get_segments(2, bbox)
    bbox = bbox.to_list()
    paths = G_paths[1]  # valid paths
    size = np.subtract(bbox[3:], bbox[:3])
    tubes = tube_seg.tubes_from_paths(size, paths)
    assert (tubes != 0).any()
Ejemplo n.º 5
0
def test_draw_tube_spheres():
    """
    Test if the function maps all the points within the radius of a segment line (defined by 2 given points) to 1, otherwise 0

    The output array should have the same size of input image and binary values

    Distance between a point and the segment line:
             <= radius (if the point has value 1)
             >  radius (if the point has value 0)
    """
    ngl_session = NeuroglancerSession(url=url, url_segments=url_seg)
    img, _, _ = ngl_session.pull_vertex_list(2, [4], expand=True)
    shape = img.shape
    vertex0 = [
        np.random.randint(shape[0] / 2),
        np.random.randint(shape[1]),
        np.random.randint(shape[2]),
    ]
    vertex1 = [
        np.random.randint(shape[0] / 2, shape[0]),
        np.random.randint(shape[1]),
        np.random.randint(shape[2]),
    ]
    radius = np.random.randint(1, 4)
    labels = tube_seg.draw_tube_from_spheres(img, vertex0, vertex1, radius)
    line = draw.line_nd(vertex0, vertex1, endpoint=True)
    coords = np.where(labels < 1)
    d_bg = max(shape)
    for pt in np.array(coords).T:
        distance_min = min(np.sum((np.array(line).T - pt)**2, axis=1))
        d_bg = min(distance_min, d_bg)
    coords = np.where(labels > 0)
    d_tube = 0
    for pt in np.array(coords).T:
        distance_min = min(np.sum((np.array(line).T - pt)**2, axis=1))
        d_tube = max(distance_min, d_tube)
    """
    Verify:
    
    I. the size of output array
    II. if the output is binary-valued
    III. minimum distance between 0-valued points and the segment line is greater than radius
    IV. maximum distance between 1-valued points and the segment line is less than or equal to radius
    """
    assert labels.shape == shape
    assert np.unique(labels).all() in [0, 1]
    assert d_bg > radius**2
    assert d_tube <= radius**2
Ejemplo n.º 6
0
def test_session_incomplete_urls(vars_local):
    """Tests that initializing a NeuroglancerSession on data without segmentation or annotation channels is valid and raises a warning."""
    input, url, url_seg, mip, _, _ = vars_local
    path = (Path(__file__).parents[3] / "data" / "test_upload" /
            "serial").as_uri()  # does not have segments or annotation
    with pytest.warns(UserWarning):
        sess = NeuroglancerSession(path)
Ejemplo n.º 7
0
def test_tubes_seg():
    """
    Test if the function maps all the points within the radius of polyline (defined by given vertices) to 1, otherwise 0

    The output array should have the same size of input image and binary values

    Distance between a point and the polyline:
             <= radius (if the point has value 1)
             >  radius (if the point has value 0)
    """
    ngl_session = NeuroglancerSession(url=url, url_segments=url_seg)
    img, _, _ = ngl_session.pull_vertex_list(2, [4], expand=True)
    shape = img.shape
    vertices = np.random.randint(min(shape), size=(4, 3))
    radius = np.random.randint(1, 4)
    labels = tube_seg.tubes_seg(img, vertices, radius)
    point = np.empty((3, 0), dtype=int)
    for i in range(3):
        lines = draw.line_nd(vertices[i], vertices[i + 1], endpoint=True)
        point = np.concatenate((point, np.array(lines)), axis=1)
    coords = np.where(labels < 1)
    d_bg = max(shape)
    for pt in np.array(coords).T:
        distance_min = min(np.sum((point.T - pt)**2, axis=1))
        d_bg = min(distance_min, d_bg)
    coords = np.where(labels > 0)
    d_tube = 0
    for pt in np.array(coords).T:
        distance_min = min(np.sum((point.T - pt)**2, axis=1))
        d_tube = max(distance_min, d_tube)
    """
    Verify:
    
    I. the size of output array
    II. if the output is binary-valued
    III. minimum distance between 0-valued points and the polyline is greater than radius
    IV. maximum distance between 1-valued points and the polyline is less than or equal to radius
    """
    assert labels.shape == shape
    assert np.unique(labels).all() in [0, 1]
    assert d_bg > radius**2
    assert d_tube <= radius**2
Ejemplo n.º 8
0
def test_tubes_from_paths_bad_inputs():
    """Tests that the tubes_from_paths method raises errors when given bad inputs."""
    sess = NeuroglancerSession(url, 0, url_seg)
    img, bbox, verts = sess.pull_voxel(2, 300,
                                       radius=5)  # A valid bbox with data.
    G_paths = sess.get_segments(2, bbox)
    G = G_paths[0]
    paths = G_paths[1]  # valid paths
    bbox = bbox.to_list()
    size = np.subtract(bbox[3:], bbox[:3])
    with pytest.raises(TypeError):
        tube_seg.tubes_from_paths("asdf", paths)
    with pytest.raises(ValueError):
        tube_seg.tubes_from_paths((-1, -1, -1), paths)
    with pytest.raises(TypeError):
        tube_seg.tubes_from_paths(size, "asdf")
    with pytest.raises(TypeError):
        tube_seg.tubes_from_paths(size, [[0, 0, "asdf"]])
    with pytest.raises(TypeError):
        tube_seg.tubes_from_paths(size, paths, radius="asdf")
    with pytest.raises(ValueError):
        tube_seg.tubes_from_paths(size, paths, radius=-1)
Ejemplo n.º 9
0
def test_draw_sphere():
    """
    Test if the function maps all the points located within the given radius of the given center to 1, otherwise 0

    The output array should have the same size of input image and binary values

    Distance between a point and the given center:
             <= radius (if the point has value 1)
             >  radius (if the point has value 0)
    """
    ngl_session = NeuroglancerSession(url=url, url_segments=url_seg)
    img, _, _ = ngl_session.pull_vertex_list(2, [4], expand=True)
    shape = img.shape
    center = [
        np.random.randint(shape[0]),
        np.random.randint(shape[1]),
        np.random.randint(shape[2]),
    ]
    radius = np.random.randint(1, 4)
    sphere = tube_seg.draw_sphere(shape, center, radius)
    coords = np.where(sphere < 1)
    d_bg = min(np.sum((np.array(coords).T - center)**2, axis=1))
    coords = np.where(sphere > 0)
    d_s = max(np.sum((np.array(coords).T - center)**2, axis=1))
    """
    Verify:
    
    I. the size of output array
    II. if the output is binary-valued
    III. minimum distance between 0-valued points and the center is greater than radius
    IV. maximum distance between 1-valued points and the center is less than or equal to radius
    """
    assert sphere.shape == shape
    assert np.unique(sphere).all() in [0, 1]
    assert d_bg > radius**2
    assert d_s <= radius**2
Ejemplo n.º 10
0
def test_NeuroglancerSession_bad_inputs(vars_local):
    """Tests that errors are raised when bad inputs are given to initializing session.NeuroglancerSession."""
    _, url, url_seg, mip, seg_id, v_id = vars_local
    with pytest.raises(TypeError):
        NeuroglancerSession(url=0)
    with pytest.raises(NotImplementedError):
        NeuroglancerSession(url="asdf")
    with pytest.raises(TypeError):
        NeuroglancerSession(url=url, mip=1.5)
    with pytest.raises(ValueError):
        NeuroglancerSession(url=url, mip=-1)
    with pytest.raises(ValueError):
        NeuroglancerSession(url=url, mip=100)
    with pytest.raises(TypeError):
        NeuroglancerSession(url, url_segments=0)
    with pytest.raises(NotImplementedError):
        NeuroglancerSession(url, url_segments="asdf")
Ejemplo n.º 11
0
def test_pull_v_list():
    url = "s3://mouse-light-viz/precomputed_volumes/brain1"
    ngl = NeuroglancerSession(url, mip=4, url_segments=url + "_segments")
    img, bounds, voxel = ngl.pull_vertex_list(2, np.arange(10))
    assert True
Ejemplo n.º 12
0
    def fit(
        self,
        seg_ids,
        num_verts=None,
        file_path=None,
        batch_size=10000,
        start_seg=None,
        start_vert=0,
        include_neighborhood=False,
        n_jobs=1,
    ):
        """
        Pulls image and background.

        Parameters
        ----------
        seg_ids : list of ints
            A list of segment indices.

        num_verts : int, optional (default=None)
            If not none, only runs on a set number of vertices.
        
        file_path : str
            If not none, then the extracted data will be written directly
            into a feather binary file. The file_path specifies the prefix
            of the file.

        batch_size : int
            Size of each batch of data to be loaded/written. Is only
            used when file_path is not none.
        
        start_seg : int
            Specifies which segment in the seg_ids list to start at.
        
        start_vert : int
            Specifies which vertex of the first seg_id to start at
        
        include_neighborhood : boolean
            If extracting linear features, specifies if the general
            neighborhood should be extracted as well.
        
        n_jobs : int
            Number of cores to use. -1 to use all available cores.

        Returns
        -------
        df : ndarray
            A dataframe of data.
        """
        voxel_dict = {}
        counter = 0
        batch_id = 0
        ngl = NeuroglancerSession(self.url, segment_url=self.segment_url)
        # if self.segment_url is None:
        #     ngl_skel = NeuroglancerSession(self.url)
        # else:
        #     ngl_skel = NeuroglancerSession(self.url, self.segment_url)

        if start_seg is not None:
            seg_ids = seg_ids[seg_ids.index(start_seg):]

        if file_path is None:
            return self._serial_processing(seg_ids, ngl, num_verts, start_vert,
                                           include_neighborhood)
        else:
            if n_jobs == 1:
                self._serial_processing(
                    seg_ids,
                    ngl,
                    num_verts,
                    start_vert,
                    include_neighborhood,
                    True,
                    batch_size,
                    file_path,
                )
            else:
                start_vertices = [0] * len(seg_ids)
                start_vertices[0] = start_vert
                par = Parallel(n_jobs=n_jobs)
                par(
                    delayed(self._parallel_processing)(
                        seg_id,
                        ngl,
                        ngl_skel,
                        num_verts,
                        start_vertices[i],
                        include_neighborhood,
                        batch_size,
                        file_path,
                    ) for i, seg_id in enumerate(seg_ids))
Ejemplo n.º 13
0
    def fit(
        self,
        seg_ids: List[int],
        num_verts: Optional[int] = None,
        file_path: Optional[str] = None,
        batch_size: int = 10000,
        start_seg: Optional[int] = None,
        start_vert: int = 0,
        include_neighborhood: bool = False,
        n_jobs: int = 1,
    ) -> np.ndarray:
        """Pulls image and background.

        Arguments:
            seg_ids: A list of segment indices.
            num_verts: If not None, only runs on a set number of vertices. Defaults to None.
            file_path: If not None, then the extracted data will be written directly
                into a feather binary file. The file_path specifies the prefix
                of the file. Defaults to None.
            batch_size: Size of each batch of data to be loaded/written. Only
                used when file_path is not none. Default 10000.
            start_seg: Specifies which segment in the seg_ids list to start at. Default 0.
            start_vert: Specifies which vertex of the first seg_id to start at. Default 0.
            include_neighborhood: If extracting linear features, specifies if the general
                neighborhood should be extracted as well. Defaults to False.
            n_jobs: Number of cores to use. -1 to use all available cores. Defaults to 1.

        Returns:
            df: A dataframe of data containing [segment, vertex, label, f_1, f_2, ..., f_d] columns.
        """
        check_iterable_type(seg_ids, (int, np.integer))
        if num_verts is not None:
            check_type(num_verts, (int, np.integer))
        if file_path is not None:
            check_type(file_path, str)
        check_type(batch_size, (int, np.integer))
        if batch_size < 1:
            raise ValueError(
                f"Batch size {batch_size} should not be negative.")
        if start_seg is not None:
            check_type(start_seg, (int, np.integer))
            if start_seg < 0:
                raise ValueError(
                    f"Starting segment {start_seg} should not be negative.")
        check_type(start_vert, (int, np.integer))
        if start_vert < 0:
            raise ValueError(
                f"Starting vertex {start_vert} should not be negative.")
        check_type(include_neighborhood, bool)
        check_type(n_jobs, (int, np.integer))
        if n_jobs < 1:
            raise ValueError(f"Number of jobs {n_jobs} should be positive.")

        voxel_dict = {}
        counter = 0
        batch_id = 0
        ngl = NeuroglancerSession(self.url, url_segments=self.segment_url)
        # ngl.cv.progress = False
        ngl.cv_segments.progress = False
        # if self.segment_url is None:
        #     ngl_skel = NeuroglancerSession(self.url)
        # else:
        #     ngl_skel = NeuroglancerSession(self.url, self.segment_url)

        if start_seg is not None:
            seg_ids = seg_ids[seg_ids.index(start_seg):]

        if file_path is None:
            return self._serial_processing(seg_ids, ngl, num_verts, start_vert,
                                           include_neighborhood)
        else:
            if n_jobs == 1:
                self._serial_processing(
                    seg_ids,
                    ngl,
                    num_verts,
                    start_vert,
                    include_neighborhood,
                    True,
                    batch_size,
                    file_path,
                )
            else:
                start_vertices = [0] * len(seg_ids)
                start_vertices[0] = start_vert
                par = Parallel(n_jobs=n_jobs)
                par(
                    delayed(self._parallel_processing)(
                        seg_id,
                        ngl,
                        ngl_skel,
                        num_verts,
                        start_vertices[i],
                        include_neighborhood,
                        batch_size,
                        file_path,
                    ) for i, seg_id in enumerate(seg_ids))
Ejemplo n.º 14
0
def session(vars_local):  # using local vars
    _, url, url_seg, mip, seg_id, v_id = vars_local
    sess = NeuroglancerSession(url=url, mip=mip, url_segments=url_seg)
    return sess, seg_id, v_id
Ejemplo n.º 15
0
df_voxel_s3 = swc.swc_to_voxel(df_s3,
                               spacing=spacing,
                               origin=np.array([0, 0, 0]))

# convert from dataframe to directed graph
G = swc.df_to_graph(df_voxel=df_voxel)
G_s3 = swc.df_to_graph(df_voxel=df_voxel_s3)

# convert directed graph into list of paths
paths = swc.graph_to_paths(G)
paths_s3 = swc.graph_to_paths(G_s3)

# create a subset of the dataframe
url = "s3://mouse-light-viz/precomputed_volumes/brain1_lowres"
mip = 1
ngl = NeuroglancerSession(url, mip=mip, url_segments=url + "_segments")
buffer = [10, 10, 10]
subneuron_df = df_s3[0:5]
vertex_list = subneuron_df["sample"].array
img, bounds, vox_in_img_list = ngl.pull_vertex_list(2,
                                                    vertex_list,
                                                    buffer=buffer,
                                                    expand=True)
df_s3_subset = swc.generate_df_subset(df_s3[0:5], vox_in_img_list)


def test_read_s3_dataframe():
    """test if output is correct type (pd.DataFrame)"""
    try:
        assert isinstance(df_s3, pd.DataFrame)
    except:
Ejemplo n.º 16
0
def test_pull():
    url = "s3://mouse-light-viz/precomputed_volumes/brain1"
    ngl = NeuroglancerSession(url, mip=4, url_segments=url + "_segments")
    img, bounds, voxel = ngl.pull_voxel(2, 300)
    img2 = ngl.pull_bounds_img(bounds)
    assert np.all(np.squeeze(np.array(img)) == np.squeeze(np.array(img2)))
Ejemplo n.º 17
0
def test_session_no_urls(vars_local):
    """Tests that initializing a NeuroglancerSession object without passing urls is valid."""
    _, url, url_seg, mip, _, _ = vars_local
    NeuroglancerSession(url)
    NeuroglancerSession(url, url_segments=url_seg)