Ejemplo n.º 1
0
    def __init__(self,
                 signed: bool,
                 narrow_range: bool,
                 quant_type: QuantType,
                 ms_bit_width_to_clamp: int,
                 clamp_at_least_init_val: bool,
                 min_overall_bit_width: Optional[int],
                 max_overall_bit_width: Optional[int],
                 msb_clamp_bit_width_impl_type: BitWidthImplType,
                 override_pretrained_bit_width: bool):
        super(ClampQuantProxy, self).__init__()

        if quant_type == QuantType.FP:
            self.tensor_quant = IdentityPrescaledIntQuant()

        elif quant_type == QuantType.INT:
            msb_clamp_bit_width_impl = MsbClampParameterBitWidth(ms_bit_width_to_clamp=ms_bit_width_to_clamp,
                                                                 clamp_at_least_init_val=clamp_at_least_init_val,
                                                                 min_overall_bit_width=min_overall_bit_width,
                                                                 max_overall_bit_width=max_overall_bit_width,
                                                                 bit_width_impl_type=msb_clamp_bit_width_impl_type,
                                                                 override_pretrained=override_pretrained_bit_width)
            tensor_clamp_impl = TensorClamp()
            float_to_int_impl = RestrictValue(restrict_value_type=RestrictValueType.INT,
                                              float_to_int_impl_type=FloatToIntImplType.ROUND,
                                              min_val=None)
            tensor_quant_impl = PrescaledRestrictIntQuantWithInputBitWidth
            self.tensor_quant = tensor_quant_impl(signed=signed,
                                                  narrow_range=narrow_range,
                                                  tensor_clamp_impl=tensor_clamp_impl,
                                                  float_to_int_impl=float_to_int_impl,
                                                  msb_clamp_bit_width_impl=msb_clamp_bit_width_impl)
        else:
            raise Exception("Quantization type {} not supported for accumulators.".format(quant_type))
    def __init__(self,
                 quant_type: QuantType,
                 bit_width: Optional[int],
                 narrow_range: bool) -> None:
        super(BiasQuantProxy, self).__init__()

        if quant_type == QuantType.FP:
            self.tensor_quant = None
        elif quant_type == QuantType.INT:
            tensor_clamp_impl = TensorClamp()
            float_to_int_impl = RestrictValue(restrict_value_type=RestrictValueType.INT,
                                              float_to_int_impl_type=FloatToIntImplType.ROUND,
                                              min_val=None)
            if bit_width is not None:
                bit_width_impl = BitWidthConst(bit_width, restrict_bit_width_type=RestrictValueType.INT)
                self.tensor_quant = PrescaledRestrictIntQuant(narrow_range=narrow_range,
                                                              signed=True,
                                                              tensor_clamp_impl=tensor_clamp_impl,
                                                              msb_clamp_bit_width_impl=bit_width_impl,
                                                              float_to_int_impl=float_to_int_impl)
                self.requires_input_bit_width = False
            else:
                self.tensor_quant = PrescaledIntQuant(narrow_range=narrow_range,
                                                      signed=True,
                                                      tensor_clamp_impl=tensor_clamp_impl,
                                                      float_to_int_impl=float_to_int_impl)
                self.requires_input_bit_width = True
        else:
            raise Exception('Quantization type {} not supported for bias quant.'
                            .format(str(quant_type)))
Ejemplo n.º 3
0
    def __init__(self,
                 signed: bool,
                 quant_type: QuantType,
                 ls_bit_width_to_trunc: int,
                 trunc_at_least_init_val: bool,
                 min_overall_bit_width: Optional[int],
                 max_overall_bit_width: Optional[int],
                 lsb_trunc_bit_width_impl_type: BitWidthImplType,
                 explicit_rescaling: bool,
                 override_pretrained_bit_width: bool):
        super(TruncQuantProxy, self).__init__()
        self.register_buffer(ZERO_HW_SENTINEL_NAME, torch.tensor(ZERO_HW_SENTINEL_VALUE))
        self.explicit_rescaling = explicit_rescaling

        if quant_type == QuantType.FP:
            self.lsb_trunc_bit_width_impl = ZeroLsbTruncBitWidth()
            self.tensor_quant = IdentityPrescaledIntQuant()

        elif quant_type == QuantType.INT:
            self.lsb_trunc_bit_width_impl = LsbTruncParameterBitWidth(ls_bit_width_to_trunc=ls_bit_width_to_trunc,
                                                                      trunc_at_least_init_val=trunc_at_least_init_val,
                                                                      min_overall_bit_width=min_overall_bit_width,
                                                                      max_overall_bit_width=max_overall_bit_width,
                                                                      bit_width_impl_type=lsb_trunc_bit_width_impl_type,
                                                                      override_pretrained=override_pretrained_bit_width)
            tensor_clamp_impl = TensorClamp()
            float_to_int_impl = RestrictValue(restrict_value_type=RestrictValueType.INT,
                                              float_to_int_impl_type=FloatToIntImplType.FLOOR,
                                              min_val=None)
            self.tensor_quant = PrescaledIntQuant(signed=signed,
                                                  narrow_range=False,
                                                  tensor_clamp_impl=tensor_clamp_impl,
                                                  float_to_int_impl=float_to_int_impl)
        else:
            raise Exception("Quantization type {} not supported for accumulators.".format(quant_type))
Ejemplo n.º 4
0
    def __init__(self,
                 num_features,
                 eps=1e-5,
                 momentum=0.1,
                 restrict_value_type: RestrictValueType = RestrictValueType.FP,
                 impl_type: ScalingImplType = ScalingImplType.STATS,
                 bias_quant_type: QuantType = QuantType.FP,
                 bias_narrow_range: bool = False,
                 bias_bit_width: int = None):
        QuantLayer.__init__(self,
                            compute_output_scale=False,
                            compute_output_bit_width=False,
                            return_quant_tensor=False)
        nn.Module.__init__(self)

        if bias_quant_type != QuantType.FP and not (self.compute_output_scale and self.compute_output_bit_width):
            raise Exception("Quantizing bias requires to compute output scale and output bit width")

        self.weight = nn.Parameter(torch.ones(num_features))
        self.bias = nn.Parameter(torch.zeros(num_features))

        if impl_type == ScalingImplType.PARAMETER_FROM_STATS:
            self.running_mean = None
            self.running_var = None
        elif impl_type == ScalingImplType.STATS:
            self.register_buffer('running_mean', torch.zeros(num_features))
            self.register_buffer('running_var', torch.ones(num_features))
        else:
            raise Exception("Scaling mode not supported")

        self.eps = eps
        self.momentum = momentum
        self.impl_type = impl_type
        self.num_features = num_features
        self.restrict_value_type = restrict_value_type
        self.bias_quant = BiasQuantProxy(quant_type=bias_quant_type,
                                         narrow_range=bias_narrow_range,
                                         bit_width=bias_bit_width)
        self.restrict_weight = RestrictValue(restrict_value_type=restrict_value_type,
                                             float_to_int_impl_type=FloatToIntImplType.ROUND,
                                             min_val=None)
        self.restrict_scaling_preprocess = RestrictValue.restrict_value_op(restrict_value_type,
                                                                           restrict_value_op_impl_type=
                                                                           RestrictValueOpImplType.TORCH_MODULE)
Ejemplo n.º 5
0
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        weight_key = prefix + 'weight'
        bias_key = prefix + 'bias'
        running_mean_key = prefix + 'running_mean'
        running_var_key = prefix + 'running_var'
        num_batches_tracked_key = prefix + 'num_batches_tracked'

        # If it's converting a FP BN into weight/bias impl
        if self.impl_type == ScalingImplType.PARAMETER_FROM_STATS \
                and running_mean_key in state_dict and running_var_key in state_dict:
            weight_init, bias_init = mul_add_from_bn(bn_bias=state_dict[bias_key],
                                                     bn_weight=state_dict[weight_key],
                                                     bn_mean=state_dict[running_mean_key],
                                                     bn_var=state_dict[running_var_key],
                                                     bn_eps=self.eps,
                                                     affine_only=False)
            restrict_op = RestrictValue.restrict_value_op(restrict_value_type=self.restrict_value_type,
                                                          restrict_value_op_impl_type=RestrictValueOpImplType.TORCH_FN)
            self.weight_sign = torch.sign(weight_init.data)
            weight_init = weight_init.detach().clone().abs().data
            self.weight.data = restrict_op(weight_init)
            self.bias.data = bias_init.detach().clone().data
            del state_dict[bias_key]
            del state_dict[weight_key]
            del state_dict[running_mean_key]
            del state_dict[running_var_key]
            del state_dict[num_batches_tracked_key]
        super(QuantBatchNorm2d, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict,
            missing_keys, unexpected_keys, error_msgs)
        if config.IGNORE_MISSING_KEYS and bias_key in missing_keys:
            missing_keys.remove(bias_key)
        if config.IGNORE_MISSING_KEYS and weight_key in missing_keys:
            missing_keys.remove(weight_key)
        if num_batches_tracked_key in unexpected_keys:
            unexpected_keys.remove(num_batches_tracked_key)
def _weight_quant_init_impl(bit_width: Optional[int],
                            quant_type: QuantType,
                            narrow_range: bool,
                            scaling_override: Optional[nn.Module],
                            restrict_scaling_type: RestrictValueType,
                            scaling_const: float,
                            scaling_stats_op: StatsOp,
                            scaling_impl_type: ScalingImplType,
                            scaling_stats_reduce_dim: Optional[int],
                            scaling_shape: Tuple[int, ...],
                            scaling_min_val: Optional[float],
                            bit_width_impl_type: Optional[BitWidthImplType],
                            restrict_bit_width_type: Optional[RestrictValueType],
                            min_overall_bit_width: Optional[int],
                            max_overall_bit_width: Optional[int],
                            bit_width_impl_override: Optional[Union[BitWidthConst, BitWidthParameter]],
                            scaling_stats_input_view_shape_impl: StatsInputViewShapeImpl,
                            scaling_stats_input_concat_dim: int,
                            ternary_threshold: Optional[float],
                            scaling_stats_sigma: Optional[float],
                            tracked_parameter_list: List[torch.nn.Parameter],
                            zero_hw_sentinel: torch.Tensor,
                            override_pretrained_bit_width: bool):

    if quant_type == QuantType.FP:
        tensor_quant = IdentityQuant()
    else:
        if scaling_impl_type != ScalingImplType.OVERRIDE and scaling_override is not None:
            raise Exception("Overriding scaling requires to set ScalingImplType to OVERRIDE explicitly.")
        if scaling_impl_type == ScalingImplType.OVERRIDE and scaling_override is None:
            raise Exception("Overriding scaling requires to pass a scaling impl module.")

        if scaling_impl_type == ScalingImplType.OVERRIDE and scaling_override is not None:
            scaling_impl = scaling_override

        elif scaling_impl_type == ScalingImplType.STATS \
                or scaling_impl_type == ScalingImplType.AFFINE_STATS \
                or scaling_impl_type == ScalingImplType.PARAMETER_FROM_STATS:
            stats_scaling = ParameterStatsScaling(stats_op=scaling_stats_op,
                                                  restrict_scaling_type=restrict_scaling_type,
                                                  tracked_parameter_list=tracked_parameter_list,
                                                  stats_input_view_shape_impl=scaling_stats_input_view_shape_impl,
                                                  stats_input_concat_dim=scaling_stats_input_concat_dim,
                                                  sigma=scaling_stats_sigma,
                                                  scaling_min_val=scaling_min_val,
                                                  stats_reduce_dim=scaling_stats_reduce_dim,
                                                  stats_output_shape=scaling_shape,
                                                  affine=scaling_impl_type == ScalingImplType.AFFINE_STATS)
            if scaling_impl_type == ScalingImplType.PARAMETER_FROM_STATS:
                if quant_type == QuantType.BINARY or quant_type == QuantType.TERNARY:
                    raise Exception("Parameter from stats scaling is currently not supported for binary/ternary")
                scaling_init = stats_scaling(zero_hw_sentinel).detach()
                scaling_impl = StandaloneScaling(scaling_init=scaling_init,
                                                 parameter_shape=scaling_shape,
                                                 restrict_scaling_type=restrict_scaling_type,
                                                 is_parameter=True,
                                                 scaling_min_val=scaling_min_val)
            else:
                scaling_impl = stats_scaling

        elif scaling_impl_type == ScalingImplType.CONST or scaling_impl_type == ScalingImplType.HE:
            if scaling_impl_type == ScalingImplType.HE:
                scaling_const = 0.0
                for param in tracked_parameter_list:  # takes average of He scaling over parameter list
                    two_dim_param = param.view(param.shape[0], -1)
                    scaling_const += math.sqrt(2.0 / two_dim_param.shape[1])
                scaling_const /= len(tracked_parameter_list)
            scaling_init = torch.tensor(scaling_const)
            scaling_impl = StandaloneScaling(scaling_init=scaling_init,
                                             parameter_shape=SCALING_SCALAR_SHAPE,
                                             restrict_scaling_type=restrict_scaling_type,
                                             is_parameter=False,
                                             scaling_min_val=None)
        else:
            raise Exception("Scaling type {} not supported for weight quantization"
                            .format(str(scaling_impl_type)))

        if bit_width == 1 and quant_type == QuantType.BINARY:
            tensor_quant = BinaryQuant(scaling_impl=scaling_impl)

        elif bit_width == 2 and quant_type == QuantType.TERNARY:
            tensor_quant = TernaryQuant(scaling_impl=scaling_impl, threshold=ternary_threshold)

        elif bit_width >= 2 and quant_type == QuantType.INT:
            if bit_width_impl_override is None:
                if (bit_width_impl_type is None
                        or bit_width is None
                        or restrict_bit_width_type is None):
                    raise Exception("Bit width is not defined properly")

                if bit_width_impl_type == BitWidthImplType.CONST:
                    tensor_clamp_impl = TensorClampSte()
                    bit_width_impl = BitWidthConst(bit_width, restrict_bit_width_type)
                elif bit_width_impl_type == BitWidthImplType.PARAMETER:
                    tensor_clamp_impl = TensorClamp()
                    bit_width_impl = BitWidthParameter(bit_width_init=bit_width,
                                                       restrict_bit_width_type=restrict_bit_width_type,
                                                       min_overall_bit_width=min_overall_bit_width,
                                                       max_overall_bit_width=max_overall_bit_width,
                                                       override_pretrained=override_pretrained_bit_width)
                else:
                    raise Exception("Bit width type {} not supported for weight quantization."
                                    .format(str(bit_width_impl_type)))
            else:
                tensor_clamp_impl = TensorClamp()
                bit_width_impl = bit_width_impl_override

            float_to_int_impl = RestrictValue(restrict_value_type=RestrictValueType.INT,
                                              float_to_int_impl_type=FloatToIntImplType.ROUND,
                                              min_val=None)
            int_scaling_impl = IntScaling(narrow_range,
                                          signed=True,
                                          restrict_scaling_type=restrict_scaling_type)
            tensor_quant = RescalingIntQuant(narrow_range=narrow_range,
                                             signed=True,
                                             scaling_impl=scaling_impl,
                                             int_scaling_impl=int_scaling_impl,
                                             tensor_clamp_impl=tensor_clamp_impl,
                                             msb_clamp_bit_width_impl=bit_width_impl,
                                             float_to_int_impl=float_to_int_impl,
                                             runtime=False)
        else:
            raise Exception('Unsupported weight quantization: {} bit width, {} quantization.'
                            .format(bit_width, str(quant_type)))
    return tensor_quant
Ejemplo n.º 7
0
    def __init__(self,
                 activation_impl: Module,
                 bit_width: int,
                 signed: bool,
                 narrow_range: bool,
                 min_val: float,
                 max_val: float,
                 quant_type: QuantType,
                 float_to_int_impl_type: FloatToIntImplType,
                 scaling_override: Optional[Module],
                 scaling_impl_type: ScalingImplType,
                 scaling_per_channel: bool,
                 scaling_min_val: Optional[float],
                 scaling_stats_sigma: Optional[float],
                 scaling_stats_op: Optional[StatsOp],
                 scaling_stats_buffer_momentum: Optional[float],
                 scaling_stats_permute_dims: Optional[Tuple],
                 per_channel_broadcastable_shape: Optional[Tuple[int, ...]],
                 min_overall_bit_width: Optional[int],
                 max_overall_bit_width: Optional[int],
                 bit_width_impl_override: Module,
                 bit_width_impl_type: BitWidthImplType,
                 restrict_bit_width_type: RestrictValueType,
                 restrict_scaling_type: RestrictValueType,
                 override_pretrained_bit_width: bool):
        super(ActivationQuantProxy, self).__init__()

        if not signed and min_val != 0.0:
            raise Exception("Min val has to be 0.0 when quantization is unsigned.")
        if scaling_per_channel and per_channel_broadcastable_shape is None:
            raise Exception("Per channel scaling requires to specify number of channels.")

        if quant_type == QuantType.FP:
            tensor_quant = IdentityQuant()
        else:
            if scaling_impl_type != ScalingImplType.OVERRIDE and scaling_override is not None:
                raise Exception("Overriding scaling requires to set ScalingImplType to OVERRIDE explicitly.")
            if scaling_impl_type == ScalingImplType.OVERRIDE and scaling_override is None:
                raise Exception("Overriding scaling requires to pass a scaling impl module.")

            if scaling_per_channel:
                scaling_shape = per_channel_broadcastable_shape
            else:
                scaling_shape = SCALING_SCALAR_SHAPE

            if scaling_impl_type == ScalingImplType.OVERRIDE and scaling_override is not None:
                scaling_impl = scaling_override
                runtime = False

            elif scaling_impl_type == ScalingImplType.CONST or scaling_impl_type == ScalingImplType.PARAMETER:
                scaling_init = RescalingIntQuant.scaling_init_from_min_max(min_val, max_val)
                scaling_impl = StandaloneScaling(is_parameter=scaling_impl_type == ScalingImplType.PARAMETER,
                                                 parameter_shape=scaling_shape,
                                                 restrict_scaling_type=restrict_scaling_type,
                                                 scaling_init=scaling_init,
                                                 scaling_min_val=scaling_min_val)
                runtime = False
            elif scaling_impl_type == ScalingImplType.STATS or scaling_impl_type == ScalingImplType.AFFINE_STATS:

                if scaling_per_channel and not scaling_stats_op == StatsOp.MAX_AVE:
                    scaling_stats_input_view_shape_impl = StatsInputViewShapeImpl.OVER_OUTPUT_CHANNELS
                    scaling_stats_reduce_dim = 1
                elif scaling_per_channel and scaling_stats_op == StatsOp.MAX_AVE:
                    raise Exception("Can't do per channel scaling with MAX AVE statistics.")
                elif not scaling_per_channel and scaling_stats_op == StatsOp.MAX_AVE:
                    scaling_stats_input_view_shape_impl = StatsInputViewShapeImpl.OVER_OUTPUT_CHANNELS
                    scaling_stats_reduce_dim = 1
                else:  # not scaling_per_channel
                    scaling_stats_input_view_shape_impl = StatsInputViewShapeImpl.OVER_TENSOR
                    scaling_stats_reduce_dim = None
                    scaling_stats_permute_dims = None

                stats_buffer_init = RescalingIntQuant.scaling_init_from_min_max(min_val, max_val).item()
                scaling_impl = RuntimeStatsScaling(stats_op=scaling_stats_op,
                                                   restrict_scaling_type=restrict_scaling_type,
                                                   stats_input_view_shape_impl=scaling_stats_input_view_shape_impl,
                                                   stats_output_shape=scaling_shape,
                                                   sigma=scaling_stats_sigma,
                                                   scaling_min_val=scaling_min_val,
                                                   stats_reduce_dim=scaling_stats_reduce_dim,
                                                   stats_buffer_momentum=scaling_stats_buffer_momentum,
                                                   stats_buffer_init=stats_buffer_init,
                                                   stats_permute_dims=scaling_stats_permute_dims,
                                                   affine=scaling_impl_type == ScalingImplType.AFFINE_STATS)
                runtime = True
            else:
                raise Exception("Scaling type {} not supported for int runtime quantization"
                                .format(str(scaling_impl_type)))

            if quant_type == QuantType.BINARY:
                if not signed:
                    raise Exception("Binary activation supports only signed activations")
                tensor_quant = ClampedBinaryQuant(scaling_impl=scaling_impl)

            elif quant_type == QuantType.INT:

                if bit_width_impl_override is None:
                    if bit_width_impl_type is None or bit_width is None or restrict_bit_width_type is None:
                        raise Exception("Bit width is not defined properly")

                    if bit_width_impl_type == BitWidthImplType.CONST:
                        tensor_clamp_impl = TensorClamp()  # If it's const, don't pass gradients to clipped values
                        msb_clamp_bit_width_impl = BitWidthConst(bit_width, restrict_bit_width_type)
                    elif bit_width_impl_type == BitWidthImplType.PARAMETER:
                        tensor_clamp_impl = TensorClamp()  # if it's learned, I pass gradients to the bit width
                        msb_clamp_bit_width_impl = BitWidthParameter(bit_width,
                                                                     min_overall_bit_width,
                                                                     max_overall_bit_width,
                                                                     restrict_bit_width_type,
                                                                     override_pretrained_bit_width)
                    else:
                        raise Exception("Bit width type {} not supported for weight quantization"
                                        .format(str(bit_width_impl_type)))
                else:
                    msb_clamp_bit_width_impl = bit_width_impl_override
                    tensor_clamp_impl = TensorClamp()  # if there is an override, it's learned

                float_to_int_impl = RestrictValue(restrict_value_type=RestrictValueType.INT,
                                                  float_to_int_impl_type=float_to_int_impl_type,
                                                  min_val=None)
                int_scaling_impl = IntScaling(narrow_range,
                                              signed=signed,
                                              restrict_scaling_type=restrict_scaling_type)
                tensor_quant = RescalingIntQuant(signed=signed,
                                                 narrow_range=narrow_range,
                                                 scaling_impl=scaling_impl,
                                                 int_scaling_impl=int_scaling_impl,
                                                 tensor_clamp_impl=tensor_clamp_impl,
                                                 msb_clamp_bit_width_impl=msb_clamp_bit_width_impl,
                                                 float_to_int_impl=float_to_int_impl,
                                                 runtime=runtime)
            else:
                raise Exception("Quantization type {} not supported for activations.".format(quant_type))

        self.fused_activation_quant_proxy = FusedActivationQuantProxy(activation_impl, tensor_quant)
        self.scaling_impl_type = scaling_impl_type  # needed to switch between different scaling modes