Ejemplo n.º 1
0
def test_mlp_fit():
    X = np.random.standard_normal((10, 2))
    Z = np.random.standard_normal((10, 1))

    X, Z = theano_floatx(X, Z)

    mlp = Mlp(2, [10], 1, ['tanh'], 'identity', 'squared', max_iter=10)
    mlp.fit(X, Z)
Ejemplo n.º 2
0
def test_mlp_fit_with_imp_weight():
    X = np.random.standard_normal((10, 2))
    Z = np.random.standard_normal((10, 1))
    W = np.random.random((10, 1)) > 0.5

    X, Z, W = theano_floatx(X, Z, W)

    mlp = Mlp(2, [10], 1, ['tanh'], 'identity', 'squared', max_iter=10, imp_weight=True)
    mlp.fit(X, Z, W)
Ejemplo n.º 3
0
def test_mlp_pickle():
    X = np.random.standard_normal((10, 2))
    Z = np.random.standard_normal((10, 1))

    X, Z = theano_floatx(X, Z)

    mlp = Mlp(2, [10], 1, ['tanh'], 'identity', 'squared', max_iter=2)

    climin.initialize.randomize_normal(mlp.parameters.data, 0, 1)
    mlp.fit(X, Z)

    Y = mlp.predict(X)

    pickled = cPickle.dumps(mlp)
    mlp2 = cPickle.loads(pickled)

    Y2 = mlp2.predict(X)

    assert np.allclose(Y, Y2)
Ejemplo n.º 4
0
def test_mlp_pickle():
    X = np.random.standard_normal((10, 2))
    Z = np.random.standard_normal((10, 1))

    X, Z = theano_floatx(X, Z)

    mlp = Mlp(2, [10], 1, ['tanh'], 'identity', 'squared', max_iter=2)

    climin.initialize.randomize_normal(mlp.parameters.data, 0, 1)
    mlp.fit(X, Z)

    Y = mlp.predict(X)

    pickled = cPickle.dumps(mlp)
    mlp2 = cPickle.loads(pickled)

    Y2 = mlp2.predict(X)

    assert np.allclose(Y, Y2)