def plot_performance(fig_num):
    num_evaluations = int(num_examples/update_interval)
    time_steps = range(0, num_evaluations)
    performance = np.zeros(num_evaluations)
    fig = b2.figure(fig_num, figsize = (5, 5))
    fig_num += 1
    ax = fig.add_subplot(111)
    im2, = ax.plot(time_steps, performance) #my_cmap
    b2.ylim(ymax = 100)
    b2.title('Classification performance')
    fig.canvas.draw()
    return im2, performance, fig_num, fig
Ejemplo n.º 2
0
def plot_performance(fig_num):
    num_evaluations = int(num_examples/update_interval)
    time_steps = range(0, num_evaluations)
    performance = np.zeros(num_evaluations)
    fig = b2.figure(fig_num, figsize = (5, 5))
    fig_num += 1
    ax = fig.add_subplot(111)
    im2, = ax.plot(time_steps, performance) #my_cmap
    b2.ylim(ymax = 100)
    b2.title('Classification performance')
    fig.canvas.draw()
    return im2, performance, fig_num, fig
Ejemplo n.º 3
0
def visualise_connectivity(S):
    Ns = len(S.source)
    Nt = len(S.target)
    b.figure(figsize=(10, 4))
    b.subplot(121)
    b.plot(b.zeros(Ns), b.arange(Ns), 'ok', ms=10)
    b.plot(b.ones(Nt), b.arange(Nt), 'ok', ms=10)
    for i, j in zip(S.i, S.j):
        b.plot([0, 1], [i, j], '-k')
    b.xticks([0, 1], ['Source', 'Target'])
    b.ylabel('Neuron index')
    b.xlim(-0.1, 1.1)
    b.ylim(-1, max(Ns, Nt))
    b.subplot(122)
    b.plot(S.i, S.j, 'ok')
    b.xlim(-1, Ns)
    b.ylim(-1, Nt)
    b.xlabel('Source neuron index')
    b.ylabel('Target neuron index')
Ejemplo n.º 4
0
    leaveout_steps = int(conv_width / b2.defaultclock.dt)
    # leaveout_steps = 10
    b2.figure()
    for trace in range(N_traces):
        net = run_model(net=net)
        r1 = net['r1']
        r2 = net['r2']
        r0 = net['r0']
        rI = net['rI']
        # ri1 = net['ri1']
        # ri2 = net['ri2']

        b2.plot(
            r1.smooth_rate(width=conv_width)[:-leaveout_steps] / b2.Hz,
            r2.smooth_rate(width=conv_width)[:-leaveout_steps] / b2.Hz)
    ymin, ymax = b2.ylim()
    xmin, xmax = b2.xlim()
    b2.ylim([min(xmin, ymin), max(xmax, ymax)])
    b2.xlim([min(xmin, ymin), max(xmax, ymax)])

    b2.figure()
    b2.plot(r1.t[:-leaveout_steps] / b2.ms,
            r1.smooth_rate(width=conv_width)[:-leaveout_steps] / b2.Hz,
            label='1')
    b2.plot(r2.t[:-leaveout_steps] / b2.ms,
            r2.smooth_rate(width=conv_width)[:-leaveout_steps] / b2.Hz,
            label='2')
    b2.plot(r0.t[:-leaveout_steps] / b2.ms,
            r0.smooth_rate(width=conv_width)[:-leaveout_steps] / b2.Hz,
            label='0')
    b2.plot(rI.t[:-leaveout_steps] / b2.ms,