Ejemplo n.º 1
0
def do_rank():

    n = argv.get("n", 6)
    for n in [n]:
        G = Group.cyclic(range(n))
        chis = burnside(G)
        print(n, len(chis))
        #G = make_dicyclic(n)
        #chis = burnside(G)
        #print(len(chis))

    return

    for n in range(25):

        #print(n, end=" ")
        G = Group.cyclic(range(n))
        rank_C = burnside(G)
        #print(rank, end=" ")

        if n != 2:
            G = Group.dihedral(range(n))
            rank_D = burnside(G)
            #print(rank, end=" ")
        #else:
        #print("?", end=" ")

        G = make_dicyclic(n)
        rank_Dic = burnside(G)
        #print(rank, end=" ")
        #print()

        print(r"    %d  & %d   & %d  & %d  \\" % (n, rank_C, rank_D, rank_Dic))
Ejemplo n.º 2
0
def main():

    ring = element.Q
    zero = ring.zero
    one = ring.one

    n = argv.get("n", 3)
    if argv.cyclic:
        G = Group.cyclic(n)
    else:
        G = Group.symmetric(n)

    comm = G.is_abelian()

    print(G)

    d = len(G)
    K = Space(ring, 1, name="K")
    V = Space(ring, d, name="V")
    VV = V @ V

    scalar = K.identity()
    I = V.identity()
    swap = VV.get_swap()

    lunit = Lin(V, K @ V, elim.identity(ring, d))
    runit = Lin(V, V @ K, elim.identity(ring, d))

    cap = Lin(K, V @ V)  # tgt, src
    cup = Lin(V @ V, K)  # tgt, src
    for i in range(d):
        cup[i + d * i, 0] = one
        cap[0, i + d * i] = one

    # green spiders
    g_ = Lin(K, V)  # uniform discard
    _g = Lin(V, K)  # uniform create
    g_gg = Lin(VV, V)  # copy
    gg_g = Lin(V, VV)  # pointwise mul

    for i in range(d):
        g_[0, i] = one
        _g[i, 0] = one
        g_gg[i + d * i, i] = one
        gg_g[i, i + d * i] = one

    eq = lambda lhs, rhs: lhs.weak_eq(rhs)

    assert eq(g_gg >> (g_ @ I), I)  # counit
    assert eq(g_gg >> (I @ g_), I)  # counit
    assert eq(g_gg >> (g_gg @ I), g_gg >> (I @ g_gg))  # coassoc

    assert eq(gg_g * (_g @ I), I)  # unit
    assert eq(gg_g * (I @ _g), I)  # unit
    assert eq(gg_g * (gg_g @ I), gg_g * (I @ gg_g))  # assoc

    assert eq((g_gg @ I) >> (I @ gg_g), (I @ g_gg) >> (gg_g @ I))  # frobenius
    assert eq((g_gg @ I) >> (I @ gg_g), gg_g >> g_gg)  # extended frobenius

    assert eq(_g >> g_, d * scalar)

    assert eq(gg_g >> g_, cap)
    assert eq(_g >> g_gg, cup)

    # red spiders
    r_ = Lin(K, V)  # discard unit
    _r = Lin(V, K)  # create unit
    r_rr = Lin(VV, V)  # comul
    rr_r = Lin(V, VV)  # mul

    # hopf involution
    inv = Lin(V, V)

    lookup = dict((v, k) for (k, v) in enumerate(G))
    for i in range(d):
        g = G[i]
        if g.is_identity():
            r_[0, i] = one
            _r[i, 0] = one
        inv[lookup[~g], i] = one

        for j in range(d):
            h = G[j]
            gh = g * h
            k = lookup[gh]
            rr_r[k, i + j * d] = one
            r_rr[i + j * d, k] = one

    assert eq(r_rr >> (r_ @ I), I)  # unit
    assert eq(r_rr >> (I @ r_), I)  # unit
    assert eq(r_rr >> (r_rr @ I), r_rr >> (I @ r_rr))  # assoc

    assert eq(rr_r * (_r @ I), I)  # unit
    assert eq(rr_r * (I @ _r), I)  # unit
    assert eq(rr_r * (rr_r @ I), rr_r * (I @ rr_r))  # assoc

    assert eq((r_rr @ I) >> (I @ rr_r), (I @ r_rr) >> (rr_r @ I))  # frobenius
    assert eq((r_rr @ I) >> (I @ rr_r), rr_r >> r_rr)  # extended frobenius

    assert eq((_r >> r_), scalar)

    assert not eq(rr_r >> r_, cap)
    assert not eq(_r >> r_rr, cup)

    # K[G] is a bialgebra
    assert eq(rr_r >> g_, g_ @ g_)
    assert eq(_r >> g_gg, _r @ _r)
    assert eq(_r >> g_, scalar)
    if not argv.skip:
        assert eq(rr_r >> g_gg, (g_gg @ g_gg) >> (I @ swap @ I) >>
                  (rr_r @ rr_r))
    print("K[G] is comm  ", eq(swap >> rr_r, rr_r))
    print("K[G] is cocomm", eq(g_gg >> swap, g_gg))

    # K[G] is hopf
    rhs = g_ >> _r
    assert eq(g_gg >> (I @ inv) >> rr_r, rhs)
    assert eq(g_gg >> (inv @ I) >> rr_r, rhs)

    # k^G is a bialgebra
    assert eq(gg_g >> r_, r_ @ r_)
    assert eq(_g >> r_rr, _g @ _g)
    assert eq(_g >> r_, scalar)
    if not argv.skip:
        assert eq(gg_g >> r_rr, (r_rr @ r_rr) >> (I @ swap @ I) >>
                  (gg_g @ gg_g))

    # k^G is hopf
    rhs = r_ >> _g
    assert eq(r_rr >> (I @ inv) >> gg_g, rhs)
    assert eq(r_rr >> (inv @ I) >> gg_g, rhs)
    print("k^G is comm   ", eq(swap >> gg_g, gg_g))
    print("k^G is cocomm ", eq(r_rr >> swap, r_rr))

    #print(rr_r)
    #print(r_rr)

    # unimodular
    r_cup = _r >> r_rr
    g_cap = gg_g >> g_
    assert eq(r_cup >> (I @ g_), _g)
    assert eq(r_cup >> (g_ @ I), _g)
    assert eq((I @ _r) >> g_cap, r_)
    assert eq((_r @ I) >> g_cap, r_)
    assert eq(inv, (I @ r_cup) >> (swap @ I) >> (I @ g_cap))
    assert eq(inv, (r_cup @ I) >> (I @ swap) >> (g_cap @ I))

    assert eq(r_rr >> rr_r, d * I)
    assert eq(g_gg >> gg_g, I)  # special

    # complementary frobenius structures ?
    # Heunen & Vicary eq (6.4)
    lhs = (_r @ I) >> (r_rr @ g_gg) >> (I @ gg_g @ I) >> (I @ g_ @ I) >> (
        I @ lunit) >> rr_r
    rhs = g_ >> _r
    assert eq(lhs, rhs)

    lhs = (I @ _r) >> (r_rr @ g_gg) >> (I @ gg_g @ I) >> (I @ g_ @ I) >> (
        I @ lunit) >> rr_r
    #assert eq(lhs, rhs) # FAIL

    lhs = (_g @ I) >> (g_gg @ r_rr) >> (I @ rr_r @ I) >> (I @ r_ @ I) >> (
        I @ lunit) >> gg_g
    rhs = r_ >> _g
    assert eq(lhs, rhs)

    lhs = (I @ _g) >> (g_gg @ r_rr) >> (I @ rr_r @ I) >> (I @ r_ @ I) >> (
        I @ lunit) >> gg_g
    #assert eq(lhs, rhs) # FAIL

    # Heunen & Vicary eq (6.5)
    lhs = (_r @ I) >> (r_rr @ I) >> (I @ gg_g) >> (I @ g_)
    rhs = (I @ _r) >> (I @ r_rr) >> (gg_g @ I) >> (g_ @ I)
    assert eq(lhs, rhs)

    lhs = (_g @ I) >> (g_gg @ I) >> (I @ rr_r) >> (I @ r_)
    rhs = (I @ _g) >> (I @ g_gg) >> (rr_r @ I) >> (r_ @ I)
    assert eq(lhs, rhs)

    assert eq(r_rr, r_rr >> swap) == G.is_abelian()
    assert eq(rr_r, swap >> rr_r) == G.is_abelian()

    assert eq(_r >> r_rr, _r >> r_rr >> swap)
    assert eq(rr_r >> r_, swap >> rr_r >> r_)