Ejemplo n.º 1
0
    def test01_most_similar(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        pals = ParALS(als)
        random_keys = [
            k for k, _ in als.most_similar('49.Star_Wars_(1977)', topk=128)
        ]
        random_indexes = als.get_index_pool(random_keys)
        naive = [als.most_similar(k, topk=10) for k in random_keys]
        topks0 = [[k for k, _ in result] for result in naive]
        scores0 = np.array([[v for _, v in result] for result in naive])
        self.assertEqual(scores0.shape, (
            128,
            10,
        ), msg='check even size')
        scores0 = scores0.reshape(len(naive), 10)
        pals.num_workers = 1
        topks1, scores1 = pals.most_similar(random_keys, topk=10, repr=True)
        topks2, scores2 = pals.most_similar(random_indexes, topk=10, repr=True)

        for a, b in combinations([topks0, topks1, topks2], 2):
            self.assertEqual(a, b)
        for a, b in combinations([scores0, scores1, scores2], 2):
            self.assertTrue(np.allclose(a, b))
Ejemplo n.º 2
0
    def test05_topk_MT(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()

        als.build_userid_map()
        all_keys = als._idmanager.userids
        start_t = time.time()
        naive = als.topk_recommendation(all_keys, topk=5)
        naive_elapsed = time.time() - start_t

        pals = ParALS(als)
        pals.num_workers = 4
        start_t = time.time()
        qkeys1, topks1, scores1 = pals.topk_recommendation(all_keys,
                                                           topk=5,
                                                           repr=True)
        par_elapsed = time.time() - start_t
        self.assertEqual(len(qkeys1), len(naive))
        for q, t in zip(qkeys1, topks1):
            self.assertEqual(naive[q], t)
        self.assertTrue(naive_elapsed > par_elapsed * 1.5)
Ejemplo n.º 3
0
 def als(self, database, **kwargs):
     from buffalo.algo.als import ALS
     opts = self.get_option('buffalo', 'als', **kwargs)
     data_opt = self.get_database(database, **kwargs)
     als = ALS(opts, data_opt=data_opt)
     als.initialize()
     if kwargs.get('return_instance_before_train'):
         return als
     elapsed, mem_info = self.run(als.train)
     als = None
     return elapsed, mem_info
Ejemplo n.º 4
0
    def test2_most_similar(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'

        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        q1, q2, q3 = '49.Star_Wars_(1977)', '180.Return_of_the_Jedi_(1983)', '171.Empire_Strikes_Back,_The_(1980)'
        self._test_most_similar(als, q1, q2, q3)
Ejemplo n.º 5
0
def example1():
    log.set_log_level(log.DEBUG)
    als_option = ALSOption().get_default_option()
    als_option.validation = aux.Option({'topk': 10})
    data_option = MatrixMarketOptions().get_default_option()
    data_option.input.main = '../tests/ext/ml-100k/main'
    data_option.input.iid = '../tests/ext/ml-100k/iid'

    als = ALS(als_option, data_opt=data_option)
    als.initialize()
    als.train()
    print('MovieLens 100k metrics for validations\n%s' % json.dumps(als.get_validation_results(), indent=2))

    print('Similar movies to Star_Wars_(1977)')
    for rank, (movie_name, score) in enumerate(als.most_similar('49.Star_Wars_(1977)')):
        print(f'{rank + 1:02d}. {score:.3f} {movie_name}')

    print('Run hyper parameter optimization for val_ndcg...')
    als.opt.num_workers = 4
    als.opt.evaluation_period = 10
    als.opt.optimize = aux.Option({
        'loss': 'val_ndcg',
        'max_trials': 100,
        'deployment': True,
        'start_with_default_parameters': True,
        'space': {
            'd': ['randint', ['d', 10, 128]],
            'reg_u': ['uniform', ['reg_u', 0.1, 1.0]],
            'reg_i': ['uniform', ['reg_i', 0.1, 1.0]],
            'alpha': ['randint', ['alpha', 1, 10]],
        }
    })
    log.set_log_level(log.INFO)
    als.opt.model_path = './example1.ml100k.als.optimize.bin'
    print(json.dumps({'alpha': als.opt.alpha, 'd': als.opt.d,
                      'reg_u': als.opt.reg_u, 'reg_i': als.opt.reg_i}, indent=2))
    als.optimize()
    als.load('./example1.ml100k.als.optimize.bin')

    print('Similar movies to Star_Wars_(1977)')
    for rank, (movie_name, score) in enumerate(als.most_similar('49.Star_Wars_(1977)')):
        print(f'{rank + 1:02d}. {score:.3f} {movie_name}')

    optimization_res = als.get_optimization_data()
    best_parameters = optimization_res['best_parameters']

    print(json.dumps(optimization_res['best'], indent=2))
    print(json.dumps({'alpha': int(best_parameters['alpha']), 'd': int(best_parameters['d']),
                      'reg_u': best_parameters['reg_u'], 'reg_i': best_parameters['reg_i']}, indent=2))
Ejemplo n.º 6
0
def example2():
    log.set_log_level(log.INFO)
    als_option = ALSOption().get_default_option()
    data_option = MatrixMarketOptions().get_default_option()
    data_option.input.main = '../tests/ext/ml-20m/main'
    data_option.input.iid = '../tests/ext/ml-20m/iid'
    data_option.data.path = './ml20m.h5py'
    data_option.data.use_cache = True

    als = ALS(als_option, data_opt=data_option)
    als.initialize()
    als.train()
    als.normalize('item')
    als.build_itemid_map()

    print(
        'Make item recommendation on als.ml20m.par.top10.tsv with Paralell(Thread=4)'
    )
    par = ParALS(als)
    par.num_workers = 4
    all_items = als._idmanager.itemids
    start_t = time.time()
    with open('als.ml20m.par.top10.tsv', 'w') as fout:
        for idx in range(0, len(all_items), 128):
            topks, _ = par.most_similar(all_items[idx:idx + 128], repr=True)
            for q, p in zip(all_items[idx:idx + 128], topks):
                fout.write('%s\t%s\n' % (q, '\t'.join(p)))
    print('took: %.3f secs' % (time.time() - start_t))

    from n2 import HnswIndex
    index = HnswIndex(als.Q.shape[1])
    for f in als.Q:
        index.add_data(f)
    index.build(n_threads=4)
    index.save('ml20m.n2.index')
    index.unload()
    print(
        'Make item recommendation on als.ml20m.par.top10.tsv with Ann(Thread=1)'
    )
    par.set_hnsw_index('ml20m.n2.index', 'item')
    par.num_workers = 4
    start_t = time.time()
    with open('als.ml20m.ann.top10.tsv', 'w') as fout:
        for idx in range(0, len(all_items), 128):
            topks, _ = par.most_similar(all_items[idx:idx + 128], repr=True)
            for q, p in zip(all_items[idx:idx + 128], topks):
                fout.write('%s\t%s\n' % (q, '\t'.join(p)))
    print('took: %.3f secs' % (time.time() - start_t))
Ejemplo n.º 7
0
    def test06_topk_pool(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        pals = ParALS(als)

        pool = np.array([i for i in range(5)], dtype=np.int32)
        als.build_userid_map()
        all_keys = als._idmanager.userids[::][:10]
        naive = als.topk_recommendation(all_keys, topk=10, pool=pool)
        qkeys1, topks1, scores1 = pals.topk_recommendation(all_keys, topk=10, pool=pool, repr=True)
        for q, t in zip(qkeys1, topks1):
            self.assertEqual(naive[q], t)
Ejemplo n.º 8
0
    def test00_tensorboard(self):
        set_log_level(2)
        opt = ALSOption().get_default_option()
        opt.d = 5
        opt.validation = aux.Option({'topk': 10})
        opt.tensorboard = aux.Option({'root': './tb', 'name': 'als'})

        data_opt = MatrixMarketOptions().get_default_option()
        data_opt.input.main = self.ml_100k + 'main'
        data_opt.input.uid = self.ml_100k + 'uid'
        data_opt.input.iid = self.ml_100k + 'iid'
        data_opt.data.value_prepro = aux.Option({'name': 'OneBased'})

        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        results = als.get_validation_results()
        self.assertTrue(results['ndcg'] > 0.025)
        self.assertTrue(results['map'] > 0.015)
Ejemplo n.º 9
0
    def test02_most_similar(self):
        set_log_level(1)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        als.build_itemid_map()
        pals = ParALS(als)

        all_keys = als._idmanager.itemids[::]
        start_t = time.time()
        [als.most_similar(k, topk=10) for k in all_keys]
        naive_elapsed = time.time() - start_t

        pals.num_workers = 4
        start_t = time.time()
        pals.most_similar(all_keys, topk=10, repr=True)
        parals_elapsed = time.time() - start_t

        self.assertTrue(naive_elapsed > parals_elapsed * 3.0)