Ejemplo n.º 1
0
 def test01_optimize(self):
     space = Optimizable()._get_space({'x': ['uniform', ['x', 1, 10]]})
     best = fmin(fn=lambda opt: opt['x']**2,
                 space=space,
                 algo=tpe.suggest,
                 max_evals=100)
     self.assertEqual(int(best['x']), 1)
Ejemplo n.º 2
0
    def __init__(self, opt_path=None, *args, **kwargs):
        Algo.__init__(self, *args, **kwargs)
        CFROption.__init__(self, *args, **kwargs)
        Evaluable.__init__(self, *args, **kwargs)
        Serializable.__init__(self, *args, **kwargs)
        Optimizable.__init__(self, *args, **kwargs)
        if opt_path is None:
            opt_path = CFROption().get_default_option()

        self.logger = log.get_logger('CFR')

        # put options into cython class with type assertion
        # see comments on options.py for the description of each parameter
        self.opt, self.opt_path = self.get_option(opt_path)
        self.obj = CyCFR()
        # check the validity of option
        self.is_valid_option(self.opt)
        assert self.obj.init(self.opt_path.encode(
            "utf8")), "putting parameter to cython object failed"

        # ensure embedding matrix is initialzed for preventing segmentation fault
        self.is_initialized = False

        self.data = None
        data = kwargs.get('data')
        data_opt = self.opt.get('data_opt')
        data_opt = kwargs.get('data_opt', data_opt)
        if data_opt:
            assert data_opt.data.internal_data_type == "matrix", \
                f"internal data type is {data_opt.data.internal_data_type}, not matrix"
            self.data = buffalo.data.load(data_opt)
            assert self.data.data_type == 'stream'
            self.data.create()
        elif isinstance(data, Data):
            self.data = data
        self.logger.info('CFR ({})'.format(json.dumps(self.opt, indent=2)))
        if self.data:
            self.logger.info(self.data.show_info())
            assert self.data.data_type in ['stream']
Ejemplo n.º 3
0
    def __init__(self, opt_path=None, *args, **kwargs):
        Algo.__init__(self, *args, **kwargs)
        W2VOption.__init__(self, *args, **kwargs)
        Evaluable.__init__(self, *args, **kwargs)
        Serializable.__init__(self, *args, **kwargs)
        Optimizable.__init__(self, *args, **kwargs)
        if opt_path is None:
            opt_path = W2VOption().get_default_option()

        self.logger = log.get_logger('W2V')
        self.opt, self.opt_path = self.get_option(opt_path)
        self.obj = CyW2V()
        assert self.obj.init(bytes(
            self.opt_path, 'utf-8')), 'cannot parse option file: %s' % opt_path
        self.data = None
        data = kwargs.get('data')
        data_opt = self.opt.get('data_opt')
        data_opt = kwargs.get('data_opt', data_opt)
        if data_opt:
            self.data = buffalo.data.load(data_opt)
            assert self.data.data_type == 'stream'
            self.data.create()
        elif isinstance(data, Data):
            self.data = data
        self.logger.info('W2V(%s)' % json.dumps(self.opt, indent=2))
        if self.data:
            self.logger.info(self.data.show_info())
            assert self.data.data_type in ['stream']
        self._vocab = aux.Option({
            'size': 0,
            'index': None,
            'inv_index': None,
            'scale': None,
            'dist': None,
            'total_word_count': 0
        })
Ejemplo n.º 4
0
    def test02_optimize(self):
        def mock_fn(opt):
            loss = 1.0 - opt['adaptive_reg'] / 1.0
            loss += 1.0 / (opt['d']**2 + 1)
            loss += 1.0 / opt['alpha']
            loss += (opt['reg_i'] / 2.0)
            loss += (opt['reg_u'] / 2.0)
            return loss

        option = ALSOption().get_default_optimize_option()
        space = Optimizable()._get_space(option.space)
        best = fmin(fn=mock_fn, space=space, algo=tpe.suggest, max_evals=600)
        self.assertGreaterEqual(int(best['d']), 2)  # this is shifted by 10
        self.assertGreaterEqual(int(best['alpha']), 15)
        self.assertLessEqual(best['reg_i'], 0.3)
        self.assertLessEqual(best['reg_u'], 0.3)
        self.assertEqual(best['adaptive_reg'], 1)
Ejemplo n.º 5
0
    def test2_optimize(self):
        def mock_fn(opt):
            loss = 1.0 - opt['adaptive_reg'] / 1.0
            loss += 1.0 / opt['d']
            loss += 1.0 / opt['alpha']
            loss += 1.0 / opt['reg_i']
            loss += 1.0 / opt['reg_u']
            return loss

        option = ALSOption().get_default_optimize_option()
        space = Optimizable()._get_space(option.space)
        best = fmin(fn=mock_fn,
                    space=space,
                    algo=tpe.suggest,
                    max_evals=600)
        self.assertGreaterEqual(int(best['d']), 16)
        self.assertGreaterEqual(int(best['alpha']), 16)
        self.assertGreaterEqual(best['reg_i'], 0.5)
        self.assertGreaterEqual(best['reg_u'], 0.5)
        self.assertEqual(best['adaptive_reg'], 1)
Ejemplo n.º 6
0
 def test00_get_space(self):
     Optimizable()._get_space({'x': ['uniform', ['x', 1, 10]]})
     self.assertTrue(True)