Ejemplo n.º 1
0
    def test01_most_similar(self):
        set_log_level(2)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        pals = ParALS(als)
        random_keys = [
            k for k, _ in als.most_similar('49.Star_Wars_(1977)', topk=128)
        ]
        random_indexes = als.get_index_pool(random_keys)
        naive = [als.most_similar(k, topk=10) for k in random_keys]
        topks0 = [[k for k, _ in result] for result in naive]
        scores0 = np.array([[v for _, v in result] for result in naive])
        self.assertEqual(scores0.shape, (
            128,
            10,
        ), msg='check even size')
        scores0 = scores0.reshape(len(naive), 10)
        pals.num_workers = 1
        topks1, scores1 = pals.most_similar(random_keys, topk=10, repr=True)
        topks2, scores2 = pals.most_similar(random_indexes, topk=10, repr=True)

        for a, b in combinations([topks0, topks1, topks2], 2):
            self.assertEqual(a, b)
        for a, b in combinations([scores0, scores1, scores2], 2):
            self.assertTrue(np.allclose(a, b))
Ejemplo n.º 2
0
def example2():
    log.set_log_level(log.INFO)
    als_option = ALSOption().get_default_option()
    data_option = MatrixMarketOptions().get_default_option()
    data_option.input.main = '../tests/ext/ml-20m/main'
    data_option.input.iid = '../tests/ext/ml-20m/iid'
    data_option.data.path = './ml20m.h5py'
    data_option.data.use_cache = True

    als = ALS(als_option, data_opt=data_option)
    als.initialize()
    als.train()
    als.normalize('item')
    als.build_itemid_map()

    print(
        'Make item recommendation on als.ml20m.par.top10.tsv with Paralell(Thread=4)'
    )
    par = ParALS(als)
    par.num_workers = 4
    all_items = als._idmanager.itemids
    start_t = time.time()
    with open('als.ml20m.par.top10.tsv', 'w') as fout:
        for idx in range(0, len(all_items), 128):
            topks, _ = par.most_similar(all_items[idx:idx + 128], repr=True)
            for q, p in zip(all_items[idx:idx + 128], topks):
                fout.write('%s\t%s\n' % (q, '\t'.join(p)))
    print('took: %.3f secs' % (time.time() - start_t))

    from n2 import HnswIndex
    index = HnswIndex(als.Q.shape[1])
    for f in als.Q:
        index.add_data(f)
    index.build(n_threads=4)
    index.save('ml20m.n2.index')
    index.unload()
    print(
        'Make item recommendation on als.ml20m.par.top10.tsv with Ann(Thread=1)'
    )
    par.set_hnsw_index('ml20m.n2.index', 'item')
    par.num_workers = 4
    start_t = time.time()
    with open('als.ml20m.ann.top10.tsv', 'w') as fout:
        for idx in range(0, len(all_items), 128):
            topks, _ = par.most_similar(all_items[idx:idx + 128], repr=True)
            for q, p in zip(all_items[idx:idx + 128], topks):
                fout.write('%s\t%s\n' % (q, '\t'.join(p)))
    print('took: %.3f secs' % (time.time() - start_t))
Ejemplo n.º 3
0
    def test02_most_similar(self):
        set_log_level(1)
        data_opt = self.get_ml100k_mm_opt()
        opt = ALSOption().get_default_option()
        opt.d = 20
        opt.num_workers = 1
        als = ALS(opt, data_opt=data_opt)
        als.initialize()
        als.train()
        als.build_itemid_map()
        pals = ParALS(als)

        all_keys = als._idmanager.itemids[::]
        start_t = time.time()
        [als.most_similar(k, topk=10) for k in all_keys]
        naive_elapsed = time.time() - start_t

        pals.num_workers = 4
        start_t = time.time()
        pals.most_similar(all_keys, topk=10, repr=True)
        parals_elapsed = time.time() - start_t

        self.assertTrue(naive_elapsed > parals_elapsed * 3.0)