def run(): if True: download_pretrained_model.run() if True: print "Bulid reconstructor" build_reconstructor.run( model_name="alexnet", layer_names=["data", "conv1", "conv2", "conv3", "conv4", "conv5"], layer_target=["conv1", "conv2", "conv3", "conv4", "conv5"], image_size=(227, 227), target_layer="fc8", ) if True: print "Test models" reconstruct.run("./testdata/024_227.png", "reconstructed.png") compute_saliency_map.run("./testdata/024.jpg", "saliency_map.png")
def run(): if True: download_pretrained_model.run() if True: print 'Bulid reconstructor' build_reconstructor.run( model_name='alexnet', layer_names=['data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5'], layer_target=[ 'conv1', 'conv2', 'conv3', 'conv4', 'conv5', ], image_size=(227, 227), target_layer='fc8', ) if True: print 'Test models' reconstruct.run('./testdata/024_227.png', 'reconstructed.png') compute_saliency_map.run('./testdata/024.jpg', 'saliency_map.png')
def run(): if False: print 'build theano models' build_alexnet.run() build_vggnet.run() if False: print 'prepare images' prepare_images.run() if False: print 'compute mean and std of feature maps' compute_mean_std.run( model_name='alexnet', layer_names=[ 'data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'fc6', 'fc7', 'fc8', ], image_size=(227, 227), ) compute_mean_std.run( model_name='vggnet', layer_names=[ 'data', 'conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4', 'fc6', 'fc7', 'fc8' ], image_size=(224, 224), ) if False: print 'PCA of feature maps' train_pca.run( model_name='alexnet', layer_names=[ 'data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5' ], image_size=(227, 227), ) train_pca.run( model_name='vggnet', layer_names=[ 'data', 'conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv3_4', 'conv4_1', 'conv4_2', 'conv4_3', 'conv4_4', 'conv5_1', 'conv5_2', 'conv5_3', 'conv5_4', ], image_size=(224, 224), ) if False: print 'Train language model' train_vlm.run( model_name='alexnet', layer_names=['data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5'], layer_sizes=[3, 96, 256, 384, 384, 256], image_size=(227, 227), ) train_vlm.run( model_name='vggnet', layer_names=[ 'data', 'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1', ], layer_sizes=[3, 64, 128, 256, 512, 512], batch_size=1, lr=2e+1, image_size=(224, 224), ) train_vlm.run( model_name='vggnet', layer_names=[ 'data', 'conv1_2', 'conv2_2', 'conv3_4', 'conv4_4', 'conv5_4', ], layer_sizes=[3, 64, 128, 256, 512, 512], batch_size=1, lr=2e+1, image_size=(224, 224), ) if False: print 'Bulid reconstructor' build_reconstructor.run( model_name='alexnet', layer_names=[ 'data', 'conv1', 'conv2', 'conv3', 'conv4', 'conv5' ], layer_target=[ 'conv1', 'conv2', 'conv3', 'conv4', 'conv5', ], image_size=(227, 227), target_layer='fc8', ) if True: print 'Test models' reconstruct.run('./testdata/024_227.png', 'reconstructed.png') compute_saliency_map.run('./testdata/024.jpg', 'saliency_map.png')