def main():
    """ Run the script as a stand alone application. """
    start_year = 1929
    stop_year = 1929

    print("\n")
    # ---- Individual Functions
    start = time.time()
    temperatures = [[year,
                     global_mean_temp(year),
                     global_min_temp(year),
                     global_max_temp(year)]
                       for year in xrange(start_year, stop_year + 1)]

    for year, mean, min, max in temperatures:
        print("{}\t{:.1f}\t{:.1f}\t{:.1f}\t{}"\
                .format(year, mean[0], min, max, mean[1]))

    print("\nUsing individual functions took {} seconds."\
            .format(round(time.time() - start, 2)))

    print("\n")
    # ---- Single Function
    start = time.time()
    temperatures = [global_summary(year)
                       for year in range(start_year, stop_year + 1)]

    for year, mean, min, max, num_obs in temperatures:
        print("{}\t{:.1f}\t{:.1f}\t{:.1f}\t{}"\
                .format(year, mean, min, max, num_obs))

    print("\nUsing a combined function took {} seconds."\
            .format(round(time.time() - start, 2)))
Ejemplo n.º 2
0
    def GetScalingRatios(self, resolution=None, places=None):
        """
        Get the scaling ratios required to upsample an image to `resolution`.

        If resolution is None, then assume it will be upsampled to the native
        destination resolution. See Dataset.GetNativeResolution()

        If places is not None, rounds the ratios to the number of decimal
        places specified.
        """
        if resolution is None:
            resolution = self.GetNativeResolution(transform=None)

        # Get the pixel dimensions in map units. There is no custom transform,
        # because it makes no sense to compute a pixel ratio for a
        # reprojection.
        spatial_ref = self.GetSpatialReference()
        dst_pixel_width, dst_pixel_height = spatial_ref.GetPixelDimensions(
            resolution=resolution
        )
        src_pixel_width, src_pixel_height = self.GetPixelDimensions()

        xscale = abs(src_pixel_width / dst_pixel_width)
        yscale = abs(src_pixel_height / dst_pixel_height)

        if places is not None:
            xscale = round(xscale, places)
            yscale = round(yscale, places)

        return XY(x=xscale, y=yscale)
Ejemplo n.º 3
0
def fprop_roipooling_ref(fm, rois, fm_channel, fm_height, fm_width, bsz, rois_per_image, H, W):

    feature_maps = fm.reshape(fm_channel, fm_height, fm_width, bsz)
    rois_per_batch = rois_per_image * bsz
    outputs = np.zeros((fm_channel, H, W, rois_per_batch))

    # combine the feature map with ROIs
    for b_id in range(rois_per_batch):
        [idx, xmin, ymin, xmax, ymax] = rois[b_id]
        xmin = int(round(xmin * spatial_scale))
        xmax = int(round(xmax * spatial_scale))
        ymin = int(round(ymin * spatial_scale))
        ymax = int(round(ymax * spatial_scale))
        roi_width = max(xmax - xmin + 1, 1)
        roi_height = max(ymax - ymin + 1, 1)

        stride_h = float(roi_height) / H
        stride_w = float(roi_width) / W

        for h_out in range(H):
            sliceh, _ = _fprop_slice_np(h_out, stride_h, fm_height, ymin)
            if sliceh.stop <= sliceh.start:
                continue
            for w_out in range(W):
                slicew, _ = _fprop_slice_np(w_out, stride_w, fm_width, xmin)
                if slicew.stop <= slicew.start:
                    continue
                else:
                    array_I = feature_maps[:, sliceh, slicew, int(idx)].reshape(
                        fm_channel, -1)
                    outputs[:, h_out, w_out, b_id] = np.max(array_I, axis=1)

    return outputs.reshape(-1, rois_per_batch)
Ejemplo n.º 4
0
    def GetWorldScalingRatios(self, resolution=None, places=None):
        """
        Get the scaling ratios required to upsample for the whole world.

        If resolution is None, then assume it will be upsampled to the native
        destination resolution. See Dataset.GetNativeResolution()

        If places is not None, rounds the ratios to the number of decimal
        places specified.
        """
        if resolution is None:
            resolution = self.GetNativeResolution()

        spatial_ref = self.GetSpatialReference()
        world = spatial_ref.GetWorldExtents().dimensions
        src_pixel_sizes = XY(x=world.x / self.RasterXSize,
                             y=world.y / self.RasterYSize)
        dst_pixel_sizes = spatial_ref.GetPixelDimensions(resolution=resolution)

        xscale = abs(src_pixel_sizes.x / dst_pixel_sizes.x)

        # Make sure that yscale fits within the whole world
        yscale = min(xscale, abs(src_pixel_sizes.y / dst_pixel_sizes.y))

        if places is not None:
            xscale = round(xscale, places)
            yscale = round(yscale, places)

        return XY(x=xscale, y=yscale)
 def test_pearson_one_target_one_feature(self, idadf):
     data = idadf._table_def() 
     columns = list(data.loc[data['VALTYPE'] == "NUMERIC"].index)
     if len(columns) > 1:
         result = pearson(idadf, target = columns[0], features=[columns[1]])
         assert(isinstance(result, float))
         result2 = pearson(idadf, target = columns[1], features=[columns[0]])
         assert(round(result,3) == round(result2,3)) # symmetry
Ejemplo n.º 6
0
 def round(f):
     # P3's builtin round differs from P2 in the following manner:
     # * it rounds half to even rather than up (away from 0)
     # * round(-0.) loses the sign (it returns -0 rather than 0)
     # * round(x) returns an int rather than a float
     #
     # this compatibility shim implements Python 2's round in terms of
     # Python 3's so that important rounding error under P3 can be
     # trivially fixed, assuming the P2 behaviour to be debugged and
     # correct.
     roundf = builtins.round(f)
     if builtins.round(f + 1) - roundf != 1:
         return f + math.copysign(0.5, f)
     # copysign ensures round(-0.) -> -0 *and* result is a float
     return math.copysign(roundf, f)
Ejemplo n.º 7
0
def hhmmss(t):
    """
    :param t: time elapsed (in seconds)
    Returns the string representation of ``t`` in format: ``hhmmss``

    """
    return str(datetime.timedelta(seconds=round(t)))
Ejemplo n.º 8
0
 def test_px_to_em_change_base(self):
     base = 16
     for pixels in range(-1000, 1001):
         expected = round(pixels / base, 4)
         expected = str(expected) + 'em'
         actual = settings.px_to_em(pixels=pixels)
         self.assertEqual(actual, expected, msg=str(actual) + ' vs ' + str(expected))
Ejemplo n.º 9
0
 def test_px_to_em_int_input(self):
     base = 16
     for pixels in range(-1000, 1001):
         expected = round(pixels / base, 4)
         expected = str(expected) + 'em'
         actual = settings.px_to_em(pixels=pixels)
         self.assertEqual(actual, str(expected), msg=pixels)
Ejemplo n.º 10
0
 def test_px_to_em_typecast_string_input(self):
     base = 16
     for pixels in range(-1000, 1001):
         expected = round(pixels / base, 4)
         expected = str(expected) + 'em'
         actual = unittest_settings.px_to_em(pixels=str(pixels))  # typecast to string str()
         self.assertEqual(actual, str(expected), msg=pixels)
Ejemplo n.º 11
0
    def probe(self):
        """
        Gets the connected probe value for this channel

        :type: `float`
        """
        return round(1 / float(self._parent.query("CH{}:PRO?".format(self._idx))), 0)
Ejemplo n.º 12
0
def bprop_roipooling_ref(fm, rois, error, fm_channel, fm_height, fm_width,
                         bsz, rois_per_image, H, W):
    """
    Function to perform a bprop of ROIPooling. It uses a different way from the
    that in CPU backend
    """
    feature_maps = fm.reshape(fm_channel, fm_height, fm_width, bsz)
    rois_per_batch = rois_per_image * bsz
    error_in = error.reshape(fm_channel, H, W, rois_per_batch)

    delta = np.zeros(feature_maps.shape).reshape(fm_channel, fm_height, fm_width, bsz)

    # combine the feature map with ROIs
    for b_id in range(rois_per_batch):
        [idx, xmin, ymin, xmax, ymax] = rois[b_id]
        xmin = int(round(xmin * spatial_scale))
        xmax = int(round(xmax * spatial_scale))
        ymin = int(round(ymin * spatial_scale))
        ymax = int(round(ymax * spatial_scale))
        roi_width = max(xmax - xmin + 1, 1)
        roi_height = max(ymax - ymin + 1, 1)

        stride_h = float(roi_height) / float(H)
        stride_w = float(roi_width) / float(W)

        for h_out in range(H):
            sliceh, lenh = _fprop_slice_np(h_out, stride_h, fm_height, ymin)
            if sliceh.stop <= sliceh.start:
                continue
            for w_out in range(W):
                slicew, lenw = _fprop_slice_np(w_out, stride_w, fm_width, xmin)
                if slicew.stop <= slicew.start:
                    continue
                else:
                    array_I = feature_maps[:, sliceh, slicew, int(idx)].reshape(
                        fm_channel, -1)
                    max_idx = np.argmax(array_I, axis=1)

                    delta_view = delta[:, sliceh, slicew, int(idx)].reshape(
                        fm_channel, -1)
                    delta_view[
                        list(range(fm_channel)), max_idx] += error_in[:, h_out, w_out, b_id]
                    delta[:, sliceh, slicew, int(idx)] = delta_view.reshape(fm_channel,
                                                                            lenh,
                                                                            lenw)

    return delta
Ejemplo n.º 13
0
 def test_px_to_em_float_input(self):
     base = 16
     # Thank you: http://stackoverflow.com/questions/477486/python-decimal-range-step-value#answer-477506
     for pixels in range(-11, 11, 1):
         pixels /= 10.0
         expected = round(float(pixels) / float(base), 4)
         expected = str(expected) + 'em'
         actual = settings.px_to_em(pixels=pixels)
         self.assertEqual(actual, str(expected), msg=str(pixels) + ': ' + str(actual) + ' vs ' + str(expected))
    def bisekt(self, lowerBound, higherBound):
        arr = []
        middleBound = ((higherBound - lowerBound) / 2) + lowerBound

        arr.append (self.afterAyear(higherBound))
        arr.append (self.afterAyear(middleBound))
        arr.append(self.afterAyear(lowerBound))
        index = bisect(arr, 0)

        # exit clause for recursive function
        if (math.ceil(middleBound * 100) / 100) == higherBound:
            return[higherBound, arr[0]]
        else:
            # find out whether balance=0 after 12 months is between lowerBound and middleBound or higherBound and middleBound
            if index == 1:
                lowerBound = middleBound
            elif index == 2:
                higherBound = middleBound
            return self.bisekt(round(lowerBound, 2), round(higherBound, 2))
Ejemplo n.º 15
0
def deepdream(image, iter_n=10, octave_n=4, octave_scale=1.4, name="Deep Dream"):
    model = DreamModel(model_path=args.data_dir)
    detail = None
    scales = [octave_scale ** -o for o in reversed(list(range(octave_n)))]

    for o_idx, scale in enumerate(scales):
        octave_shape = (3, round(image.shape[1] * scale), round(image.shape[2] * scale))
        octave_base = zoom_to(image.as_tensor(), octave_shape)
        detail = np.zeros_like(octave_base) if detail is None else zoom_to(detail, octave_shape)

        dream = DeepImage(octave_base + detail)
        model.initialize(dream)

        for i in range(iter_n):
            dream.take_step(model)
            ofile = get_numbered_file(args.dream_file, o_idx * iter_n + i)
            dream.save_image(ofile)

        detail = dream.as_tensor() - octave_base

    return dream
Ejemplo n.º 16
0
def print_css_stats(file_name=''):
    # ``file_name`` the full file_name excluding extension e.g. 'blowdry' or 'site'.
    # Assumes that the extensions to append to the file_name are '.css' and '.min.css'.
    # Print the size of a file_name.
    css_file = file_name + '.css'
    min_file = file_name + '.min.css'

    css_dir = path.join(settings.css_directory, css_file)                                    # Get full file path.
    min_dir = path.join(settings.css_directory, min_file)

    css_size = stat(css_dir).st_size                                                # Get file size in bytes.
    min_size = stat(min_dir).st_size

    percent_reduced = round(float(min_size) / float(css_size) * float(100), 1)      # Calculate percentage size reduced.

    css_kb = round(float(css_size) / float(1000), 1)                                # Convert to kilobytes.
    min_kb = round(float(min_size) / float(1000), 1)

    print('\n' + css_file + ':\t', css_kb, 'kb')
    print(min_file + ':', min_kb, 'kb')
    print('CSS file size reduced by', str(percent_reduced) + '%.')
Ejemplo n.º 17
0
def serialized(array, nsig, ndec):
  if array.ndim > 0:
    return '[{}]'.format(','.join(serialized(a, nsig, ndec) for a in array))
  if not numpy.isfinite(array): # nan, inf
    return str(array)
  a = builtins.round(float(array) * 10**ndec)
  if a == 0:
    return '0'
  while abs(a) >= 10**nsig:
    a //= 10
    ndec -= 1
  return '{}e{}'.format(a, -ndec)
Ejemplo n.º 18
0
    def round_to(self, base):
        r"""Round to a specific base (like it's required for a grid)

        :param base: base we want to round to
        :return: rounded point

        >>> from KicadModTree import *
        >>> Vector2D(0.1234, 0.5678).round_to(0.01)
        """
        if base == 0 or base is None:
            return self.__copy__()

        return Vector2D([round(v / base) * base for v in self])
Ejemplo n.º 19
0
def print_css_stats(file_name=''):
    """ ``file_name`` the full file_name excluding extension e.g. 'blowdry' or 'site'.
    Assumes that the extensions to append to the file_name are '.css' and '.min.css'.
    Print the size of a file_name.

    :type file_name: str
    :param file_name: Name of the CSS files.
    :return: None

    """
    css_file = file_name + '.css'
    min_file = file_name + '.min.css'

    css_dir = path.join(settings.css_directory, css_file)                           # Get full file path.
    min_dir = path.join(settings.css_directory, min_file)

    css_size = stat(css_dir).st_size                                                # Get file size in Bytes.
    min_size = stat(min_dir).st_size

    try:
        percent_reduced = round(                                                        # Calculate percentage size reduced.
            float(100) - float(min_size) / float(css_size) * float(100),
            1                                                                           # Precision
        )
    except ZeroDivisionError:
        percent_reduced = round(0.0, 1)

    css_kb = round(float(css_size) / float(1000), 1)                                # Convert to kiloBytes.
    min_kb = round(float(min_size) / float(1000), 1)

    css_stats = (
        '\n' + str(css_file) + ':\t ' + str(css_kb) + 'kB\n' +
        str(min_file) + ': ' + str(min_kb) + 'kB\n' +
        'CSS file size reduced by ' + str(percent_reduced) + '%.'
    )
    logging.debug(css_stats)
    print(css_stats)
Ejemplo n.º 20
0
    def GetTmsExtents(self, resolution=None, transform=None):
        """
        Returns (lower-left, upper-right) TMS tile coordinates.

        The upper-right coordinates are excluded from the range, while the
        lower-left are included.
        """
        if resolution is None:
            resolution = self.GetNativeResolution(transform=transform)

        # Get the tile dimensions in map units
        if transform is None:
            spatial_ref = self.GetSpatialReference()
        else:
            spatial_ref = transform.dst_ref

        tile_width, tile_height = spatial_ref.GetTileDimensions(
            resolution=resolution
        )

        # Validate that the native resolution extents are tile-aligned.
        extents = self.GetTiledExtents(transform=transform)
        pixel_sizes = spatial_ref.GetPixelDimensions(resolution=resolution)
        if not extents.almost_equal(self.GetExtents(transform=transform),
                                    delta=min(*pixel_sizes)):
            raise UnalignedInputError('Dataset is not aligned to TMS grid')

        # Correct for origin, because you can't do modular arithmetic on
        # half-tiles.
        left, bottom = spatial_ref.OffsetPoint(*extents.lower_left)
        right, top = spatial_ref.OffsetPoint(*extents.upper_right)

        # Divide by number of tiles
        return Extents(lower_left=XY(int(round(left / tile_width)),
                                     int(round(bottom / tile_height))),
                       upper_right=XY(int(round(right / tile_width)),
                                      int(round(top / tile_height))))
Ejemplo n.º 21
0
def _get_split_key(keys, num_splits):
  """Given a list of keys and a number of splits find the keys to split on.

  Args:
    keys: the list of keys.
    num_splits: the number of splits.

  Returns:
    A list of keys to split on.

  """

  # If the number of keys is less than the number of splits, we are limited
  # in the number of splits we can make.
  if not keys or (len(keys) < (num_splits - 1)):
    return keys

  # Calculate the number of keys per split. This should be KEYS_PER_SPLIT,
  # but may be less if there are not KEYS_PER_SPLIT * (numSplits - 1) scatter
  # entities.
  #
  # Consider the following dataset, where - represents an entity and
  # * represents an entity that is returned as a scatter entity:
  # ||---*-----*----*-----*-----*------*----*----||
  # If we want 4 splits in this data, the optimal split would look like:
  # ||---*-----*----*-----*-----*------*----*----||
  #            |          |            |
  # The scatter keys in the last region are not useful to us, so we never
  # request them:
  # ||---*-----*----*-----*-----*------*---------||
  #            |          |            |
  # With 6 scatter keys we want to set scatter points at indexes: 1, 3, 5.
  #
  # We keep this as a float so that any "fractional" keys per split get
  # distributed throughout the splits and don't make the last split
  # significantly larger than the rest.

  num_keys_per_split = max(1.0, float(len(keys)) / (num_splits - 1))

  split_keys = []

  # Grab the last sample for each split, otherwise the first split will be too
  # small.
  for i in range(1, num_splits):
    split_index = int(round(i * num_keys_per_split) - 1)
    split_keys.append(keys[split_index])

  return split_keys
Ejemplo n.º 22
0
  def get_estimated_num_splits(project, namespace, query, datastore):
    """Computes the number of splits to be performed on the given query."""
    try:
      estimated_size_bytes = ReadFromDatastore.get_estimated_size_bytes(
          project, namespace, query, datastore)
      logging.info('Estimated size bytes for query: %s', estimated_size_bytes)
      num_splits = int(min(ReadFromDatastore._NUM_QUERY_SPLITS_MAX, round(
          (float(estimated_size_bytes) /
           ReadFromDatastore._DEFAULT_BUNDLE_SIZE_BYTES))))

    except Exception as e:
      logging.warning('Failed to fetch estimated size bytes: %s', e)
      # Fallback in case estimated size is unavailable.
      num_splits = ReadFromDatastore._NUM_QUERY_SPLITS_MIN

    return max(num_splits, ReadFromDatastore._NUM_QUERY_SPLITS_MIN)
Ejemplo n.º 23
0
def Round(a,base_place=0,base=10):
    '''
        implement Rounding to bases other than 10.

        known deficiencies:
            fails with decimal input
            fails with fractions input

        Beware of 0 < base < 1 since b**(-p) == (1/b)**(p)

        >>> [Round(x,-1,5) for x in (142,143,147,)]
        [140, 145, 145]
        >>>
        >>> [(p,Round(12.345,p,2)) for p in range(-3,3)]
        [(-3, 16.0), (-2, 12.0), (-1, 12.0), (0, 12.0), (1, 12.5), (2, 12.25)]
        >>>
        >>> # Use for base < 1
        >>> # one might want decimal input
        >>> # Round to the nearest US nickel
        >>> no_pennies = Round(12.07,-1,0.05)
        >>> print('{0:.2f}'.format(no_pennies))
        12.05
        >>> # The advertising game
        >>> price_per_gallon = Round(12.379999999999,-1,1/100)
        >>> print('{0:.2f}'.format(price_per_gallon))
        12.38
        >>>
        >>> # round to nearest multiple of square root of two
        >>> x = Round(12.379999999999,1/2,2)
        >>> print (x / 2**(1/2))
        9.0
        >>>
    '''
    # consider using sign transfer for negative a

    if base == 10:
        return builtins.round(a,base_place)

    if base <= 0:
        raise ValueError('base too complex')

    b = base**base_place
    return type(a)(int(a*b+0.5)/b)
Ejemplo n.º 24
0
 def test_get_bounding_square(self):
     s1 = self.proj.get_bounding_square()
     s2 = self.proj.get_bounding_square(5)
     # is a square
     self.assertAlmostEqual(s1[1] - s1[0], s1[3] - s1[2])
     self.assertAlmostEqual(s2[1] - s2[0], s2[3] - s2[2])
     # s2 around s1
     self.assertTrue(s2[0] < s1[0] and s1[0] < s2[1])
     self.assertTrue(s2[1] > s1[1] and s1[1] > s2[0])
     self.assertTrue(s2[2] < s1[2] and s1[2] < s2[3])
     self.assertTrue(s2[3] > s1[3] and s1[3] > s2[2])
     # All points inside s1
     for point in self.proj.proj_graph.nodes():
         self.assertLessEqual(round(s1[0], 7), round(point[0], 7), msg="Point {} outside of "
                              "bounding square {} at the LEFT".format(point, s1))
         self.assertLessEqual(round(point[0], 7), round(s1[1], 7), msg="Point {} outside of "
                              "bounding square {} at the RIGHT".format(point, s1))
         self.assertLessEqual(round(s1[2], 7), round(point[1], 7), msg="Point {} outside of "
                              "bounding square {} at the BOTTOM".format(point, s1))
         self.assertLessEqual(round(point[1], 7), round(s1[3], 7), msg="Point {} outside of "
                              "bounding square {} at the TOP".format(point, s1))
Ejemplo n.º 25
0
def px_to_em(pixels):
    """ Convert a numeric value from px to em using ``settings.base`` as the unit conversion factor.

    **Rules:**

    - ``pixels`` shall only contain [0-9.-].
    - Inputs that contain any other value are simply passed through unchanged.
    - Default ``base`` is 16 meaning ``16px = 1rem``

    **Note:** Does not check the ``property_name`` or ``use_em`` values.  Rather, it blindly converts
    whatever input is provided.  The calling method is expected to know what it is doing.

    Rounds float to a maximum of 4 decimal places.

    :type pixels: str, int, float
    :param pixels: A numeric value with the units stripped.
    :return: (str)

        - If the input is convertible return the converted number as a string with the units ``em``
          appended to the end.
        - If the input is not convertible return the unprocessed input.

    >>> from blowdrycss_settings import px_to_em
    >>> # settings.use_em = True
    >>> px_to_em(pixels='-16.0')
    -1em
    >>> # settings.use_em = False
    >>> px_to_em(pixels='42px')
    42px
    >>> # Invalid input passes through.
    >>> px_to_em(pixels='invalid')
    invalid

    """
    if set(str(pixels)) <= set(digits + '-.'):
        em = float(pixels) / float(base)
        em = round(em, 4)
        em = str(em) + 'em'                             # Add 'em'.
        return em
    return pixels
Ejemplo n.º 26
0
def _rounded_compare(val1, val2):
    print('Comparing {} and {} using round()'.format(val1, val2))
    return builtins.round(val1) == builtins.round(val2)
 def round_to(x, step):
     return step * round(old_div(x, step))
Ejemplo n.º 28
0
from builtins import round
import matplotlib.pyplot as plt

# Assumptions: ScreenSize = [34.5,19.5] cm, eyeLocation = [0,11.75,60] cm, DistOfCamFromTheScreen = -2 cm
ScreenSize = [34.5, 19.5]  # cm units (Alon's Computer)
DistOfCamFromTheScreen = 2.0  # cm units
eyeLocation = [0.0, ScreenSize[1] / 2 + DistOfCamFromTheScreen, 60.0]  # cm units (relative to the camera)

histogramX = []
histogramY = []

# path joining version for other paths
DIR = os.path.join(os.getcwd(), r'UnityEyes/imgs/')
DataSetSize = len([name for name in os.listdir(DIR) if os.path.isfile(os.path.join(DIR, name))])

for i in range(1, round(DataSetSize / 2)):
    with open(r'UnityEyes/imgs/{0}.json'.format(i)) as jsonFile:
        data = json.load(jsonFile)
        eyeDetails = data['eye_details']
        Vec = eyeDetails['look_vec']
        lookVec = Vec[1:-1].split(',')
        T = eyeLocation[2] / float(lookVec[2])

        Xscreen = eyeLocation[0] + T * float(lookVec[0]) + ScreenSize[0] / 2  # The sign is + because the camera flips the look vector in x axis
        Yscreen = eyeLocation[1] - T * float(lookVec[1]) - DistOfCamFromTheScreen
        histogramX.append(Xscreen)
        histogramY.append(Yscreen)


bins=100
plt.hexbin(histogramX, histogramY, bins=bins, gridsize=1000)   # <- You need to do the hexbin plot
 def _parameter_value_to_ring_value(self, value, minv, maxv):
     vrange = self._ring_value_range
     index = int(
         round(
             (value - minv) * old_div(len(vrange) - 1, float(maxv - minv))))
     return vrange[index]
Ejemplo n.º 30
0
def round(x):
    """Rounds the given number to a globally constant precision."""
    return builtins.round(x, this._precision_digits)
Ejemplo n.º 31
0
def _roundFigures(x, n):
    return round(x, -int(np.floor(np.log10(abs(x)))) + (n - 1))
Ejemplo n.º 32
0
def to_user_range_quantized(minv, maxv):
    user_range_transform = to_user_range(minv, maxv)
    return lambda v, s: int(round(user_range_transform(v, s)))
Ejemplo n.º 33
0
def main(args):
    files = args.cgfiles

    #Uncomment the following line to display the files in a random order.
    #random.shuffle(files)

    #Prepare the pyplot figure
    totalFigures = len(files)
    figuresPerLine = int(math.ceil(math.sqrt(totalFigures)))
    fig, ax = plt.subplots(int(math.ceil(totalFigures / figuresPerLine)),
                           figuresPerLine,
                           squeeze=False,
                           figsize=(8, 8))

    #Background color of figure (not plot)
    if args.style == "WOB":
        fig.patch.set_facecolor('black')

    #Plot one projection per file.
    for i, file_ in enumerate(files):
        #get the subplot axes (Note: axes != axis in matplotlib)
        current_axes = ax[i // figuresPerLine, i % figuresPerLine]

        #Parse the file
        cg = ftmc.CoarseGrainRNA(file_)

        # Random projection direction, if no direction present in the file
        if args.proj_direction:
            direction = list(map(float, args.proj_direction.split(",")))
        elif cg.project_from is not None:
            direction = cg.project_from
        else:
            direction = ftuv.get_random_vector()

        #Generate the projection object
        proj = ftmp.Projection2D(cg,
                                 direction,
                                 rotation=180,
                                 project_virtual_atoms=args.virtual_atoms)

        #Simulate a reduced resolution of the image.
        if args.condense:
            proj.condense(args.condense)

        target_elems = []
        if args.show_distances:

            try:
                num_elems = int(args.show_distances)
            except:
                target_elems = args.show_distances.split(",")
            else:
                if num_elems > len(proj._coords.keys()):
                    raise ValueError(
                        "--show-distances must not be greater {} for the current projection ({}:'{}')"
                        .format(len(proj._coords.keys()), i, file_))
                elems = list(proj._coords.keys())
                random.shuffle(elems)
                while len(target_elems) < num_elems:
                    r = random.random()
                    if r < 0.4:
                        hairpins = [
                            x for x in elems
                            if x[0] == "h" and x not in target_elems
                        ]
                        if hairpins:
                            target_elems.append(hairpins[0])
                            continue
                    if r < 0.6:
                        multiloops = [
                            x for x in elems
                            if x[0] == "m" and x not in target_elems
                        ]
                        if multiloops:
                            target_elems.append(multiloops[0])
                            continue
                    others = [x for x in elems if x not in target_elems]
                    target_elems.append(others[0])
        comb = list(it.combinations(target_elems, 2))
        #print(comb, target_elems)
        if args.label_elements:
            target_elems = list(proj._coords.keys())
        line2dproperties = {}
        if args.style == "BOW":
            line2dproperties["color"] = "black"
        elif args.style == "WOB":
            line2dproperties["color"] = "white"

        #Plot the projection #
        proj.plot(current_axes,
                  margin=15,
                  linewidth=3,
                  add_labels=set(target_elems),
                  line2dproperties=line2dproperties,
                  show_distances=comb,
                  print_distances=args.print_distances)

        #Uncomment to set a substring of the filename as a title
        #current_axes.set_title(file[-15:])

        #Hide the x- and y axis.
        current_axes.get_xaxis().set_visible(False)
        current_axes.get_yaxis().set_visible(False)

        #Print the projection direction and the filename in the plot.
        if args.show_direction or args.p:
            current_axes.text(0.01,
                              0.01,
                              "Projection direction: ({},{},{})".format(
                                  round(direction[0],
                                        3), round(direction[1], 3),
                                  round(direction[2], 3)),
                              transform=current_axes.transAxes)
        if args.show_filename or args.p:
            current_axes.text(
                0.01,
                0.99,
                "File: {}".format(file_),
                transform=current_axes.transAxes,
                verticalalignment='top',
            )

        #Change the backgroundcolor of the plot area.
        if args.style == "WOB":
            current_axes.set_axis_bgcolor('black')

    #Hide additional subplots with no projection on them.
    for i in range(
            len(files),
            int(math.ceil(totalFigures / figuresPerLine)) * figuresPerLine):
        ax[i // figuresPerLine, i % figuresPerLine].axis('off')

    # Reduce the space outside of the plots and between the subplots.
    plt.subplots_adjust(left=0.025,
                        right=0.975,
                        bottom=0.025,
                        top=0.975,
                        wspace=0.05,
                        hspace=0.05)

    if args.out:
        for ofname in args.out:
            if args.out_path:
                ofname = os.path.join(args.out_path, ofname)
            ofname = os.path.expanduser(ofname)
            plt.savefig(ofname, format=ofname[-3:])
    if not args.out or args.show:
        #Show the plot and clear it from the internal memory of matplotlib.
        plt.show()
 def test_multiply_integer_reverse_current_value(self, pi_point):
     """Test adding a PIPoint to an integer via the current value."""
     point2 = 1 * pi_point.point
     assert round(point2.current_value - (pi_point.values[-1] * 1),
                  ndigits=7) == 0
Ejemplo n.º 35
0
                    for v in sess.graph.get_collection('trainable_variables'):
                        num_params += np.prod(v.get_shape()).value

                    print('epoch', 'val loss', 'duration', sep='\t')
                    run_start = start = timeit.default_timer()
                    
                    validation_loss = 0
                    for i in range(len(val_images)//minibatch_size):
                        minibatch_validation_loss = sess.run(total_loss, feed_dict={
                                                                                seq_in:     val_captions_in [i*minibatch_size:(i+1)*minibatch_size],
                                                                                seq_len:    val_captions_len[i*minibatch_size:(i+1)*minibatch_size],
                                                                                seq_target: val_captions_out[i*minibatch_size:(i+1)*minibatch_size],
                                                                                image:      val_images[i*minibatch_size:(i+1)*minibatch_size]
                                                                            })
                        validation_loss += minibatch_validation_loss
                    print(0, round(validation_loss, 3), round(timeit.default_timer() - start), sep='\t')
                    last_validation_loss = validation_loss
                    
                    trainingset_indexes = list(range(len(train_images)))
                    for epoch in range(1, max_epochs+1):
                        random.shuffle(trainingset_indexes)
                        
                        start = timeit.default_timer()
                        for i in range(len(trainingset_indexes)//minibatch_size):
                            minibatch_indexes = trainingset_indexes[i*minibatch_size:(i+1)*minibatch_size]
                            sess.run(train_step, feed_dict={
                                                            seq_in:     train_captions_in [minibatch_indexes],
                                                            seq_len:    train_captions_len[minibatch_indexes],
                                                            seq_target: train_captions_out[minibatch_indexes],
                                                            image:      train_images[minibatch_indexes]
                                                        })
Ejemplo n.º 36
0
def divConn(self, preCellsTags, postCellsTags, connParam):
    from .. import sim
    ''' Generates connections between all pre and post-syn cells based on probability values'''
    if sim.cfg.verbose:
        print('Generating set of divergent connections (rule: %s) ...' %
              (connParam['label']))

    # get list of params that have a lambda function
    paramsStrFunc = [
        param for param in [p + 'Func' for p in self.connStringFuncParams]
        if param in connParam
    ]

    # copy the vars into args immediately and work out which keys are associated with lambda functions only once per method
    funcKeys = {}
    for paramStrFunc in paramsStrFunc:
        connParam[paramStrFunc + 'Args'] = connParam[paramStrFunc +
                                                     'Vars'].copy()
        funcKeys[paramStrFunc] = [
            key for key in connParam[paramStrFunc + 'Vars']
            if callable(connParam[paramStrFunc + 'Vars'][key])
        ]

    # converted to list only once
    postCellsTagsKeys = sorted(postCellsTags)

    # calculate hash for post cell gids
    hashPostCells = sim.hashList(postCellsTagsKeys)

    for preCellGid, preCellTags in preCellsTags.items(
    ):  # for each presyn cell
        divergence = connParam['divergenceFunc'][
            preCellGid] if 'divergenceFunc' in connParam else connParam[
                'divergence']  # num of presyn conns / postsyn cell
        divergence = max(min(int(round(divergence)),
                             len(postCellsTags) - 1), 0)
        self.rand.Random123(hashPostCells, preCellGid,
                            sim.cfg.seeds['conn'])  # init randomizer
        randSample = self.randUniqueInt(self.rand, divergence + 1, 0,
                                        len(postCellsTags) - 1)

        # note: randSample[divergence] is an extra value used only if one of the random postGids coincided with the preGid
        postCellsSample = {
            postCellsTagsKeys[randSample[divergence]]
            if postCellsTagsKeys[i] == preCellGid else postCellsTagsKeys[i]: 0
            for i in randSample[0:divergence]
        }  # dict of selected gids of postsyn cells with removed pre gid

        for postCellGid in [c for c in postCellsSample if c in self.gid2lid]:
            postCellTags = postCellsTags[postCellGid]
            for paramStrFunc in paramsStrFunc:  # call lambda functions to get weight func args
                # update the relevant FuncArgs dict where lambda functions are known to exist in the corresponding FuncVars dict
                for funcKey in funcKeys[paramStrFunc]:
                    connParam[paramStrFunc +
                              'Args'][funcKey] = connParam[paramStrFunc +
                                                           'Vars'][funcKey](
                                                               preCellTags,
                                                               postCellTags)

            if preCellGid != postCellGid:  # if not self-connection
                self._addCellConn(connParam, preCellGid,
                                  postCellGid)  # add connection
Ejemplo n.º 37
0
from math import fabs
from builtins import round

# Absolute value

data = -5
data2 = -4.5
data3 = [1, 2, 3, 4, 5]

print("\n***** Absolute value of -5 is 5 ******\n")
print(abs(data))

print("\n***** Absolute value of -4.5 is 4.5 ******\n")
print(abs(data2))

print(
    "\n***** Sum adds valuest together, 0 is from what value calculation starts ******\n"
)
print(sum(data3, 0))

print("\n***** Round returns value by given decimals ******\n")
value = 12.31313131313
print(round(value, 2))

print(
    "\n***** Round, if return decimal amount is set to None, value will just be rounded ******\n"
)
value = 12.61313131313
print(round(value, None))
Ejemplo n.º 38
0
def set_plot_verbosity(new_plot_verbosity):
    """Set the plot verbosity."""
    global plot_verbosity
    plot_verbosity = round(new_plot_verbosity)
    _check_verbosity(plot_verbosity)
Ejemplo n.º 39
0
def set_verbosity(new_verbosity):
    """Set the verbosity."""
    global verbosity
    verbosity = round(new_verbosity)
    _check_verbosity(verbosity)
Ejemplo n.º 40
0
    def to_gds(self, outfile, multiplier):
        """
        Convert this label to a GDSII structure.

        Parameters
        ----------
        outfile : open file
            Output to write the GDSII.
        multiplier : number
            A number that multiplies all dimensions written in the GDSII
            structure.
        """
        outfile.write(
            struct.pack(
                ">4Hh2Hh2Hh",
                4,
                0x0C00,
                6,
                0x0D02,
                self.layer,
                6,
                0x1602,
                self.texttype,
                6,
                0x1701,
                self.anchor,
            ))
        if ((self.rotation is not None) or (self.magnification is not None)
                or self.x_reflection):
            word = 0
            values = b""
            if self.x_reflection:
                word += 0x8000
            if not (self.magnification is None):
                # This flag indicates that the magnification is absolute, not
                # relative (not supported).
                # word += 0x0004
                values += struct.pack(">2H", 12, 0x1B05) + _eight_byte_real(
                    self.magnification)
            if not (self.rotation is None):
                # This flag indicates that the rotation is absolute, not
                # relative (not supported).
                # word += 0x0002
                values += struct.pack(">2H", 12, 0x1C05) + _eight_byte_real(
                    self.rotation)
            outfile.write(struct.pack(">3H", 6, 0x1A01, word))
            outfile.write(values)
        text = self.text
        if len(text) % 2 != 0:
            text = text + "\0"
        outfile.write(
            struct.pack(
                ">2H2l2H",
                12,
                0x1003,
                int(round(self.position[0] * multiplier)),
                int(round(self.position[1] * multiplier)),
                4 + len(text),
                0x1906,
            ))
        outfile.write(text.encode("ascii"))
        outfile.write(struct.pack(">2H", 4, 0x1100))
Ejemplo n.º 41
0
# Question 6
from builtins import input, round, int, str
from math import *

C, H = 50, 30


def calc(D):
    return sqrt((2 * C * D) / H)


D = input().split(',')
D = [int(i) for i in D]
D = [calc(i) for i in D]
D = [round(i) for i in D]
D = [str(i) for i in D]

print(",".join(D))
Ejemplo n.º 42
0
        async def on_message(message):
            if message.content.startswith(PREFIX) and not message.content.startswith(PREFIX*2):
                raw_command = message.content[len(PREFIX):]
                command = raw_command.split(' ')[0].lower()
                
                raw_args = raw_command[len(command) + 1:].strip()
                args = raw_args.split(' ')
                
                if message.author.id in DEVELOPERS:  # Dev only commands
                    if command == 'say':  # Say somethin'
                        await send_message(message.channel, raw_args)
                    elif command == 'die':  # Logout
                        await send_message(message.channel, ':wave:')
                        await self.logout()
                    elif command == 'role_ids':  # DM a list of the IDs of all the roles
                        await send_message(message.author,
                            '\n'.join(['{}: {}'.format(role.name.replace('@', '@\u200b'), role.id) for role in message.guild.roles]))
                        await send_message(message.channel,':mailbox_with_mail:')
                    elif command == 'eval' and message.author.id == BOT_HOSTER:
                        result = None
                        env = {
                            'channel': message.channel,
                            'author': message.author,
                            'self': self,
                            'message': message,
                            'channel': message.channel,
                            'save_data': save_data,
                        }
                        env.update(globals())

                        try:
                            result = eval(raw_args, env)

                            if inspect.isawaitable(result):
                                result = await result

                            colour = 0x00FF00
                        except Exception as e:
                            result = type(e).__name__ + ': ' + str(e)
                            colour = 0xFF0000

                        embed = discord.Embed(colour=colour, title=raw_args, description='```py\n{}```'.format(result))
                        embed.set_author(name=message.author.display_name, icon_url=message.author.avatar_url)
                        try:
                            await message.channel.send(embed=embed)
                        except discord.errors.Forbidden:
                            pass
                
                # General util                
                if command == 'help':
                    commands = {
                        'help':('[command]','get help on commands.'),
                        'ping':('','ping the bot.'),
                        'me':('','tells you about yourself.'),
                        'about':('','about TWOWBot.'),
                        'id':('','get the twow id of the current channel.'),
                        'prompt':('','get the prompt of the current channel.'),
                        'season':('','get the season of the current channel.'),
                        'round':('','get the round of the current channel'),
                        'respond':('<mtwow id> <response>','respond to a prompt.'),
                        'vote':('<mtwow id> [vote]','vote on a mTWOW.'),
                        'register':('<mtwow id>','registers the current channel with an id'),
                        'show_config':('[mtwow id]','get the database for a channel.'),
                        'responses':('[mtwow id]','get the responses for this round.'),
                        'set_prompt':('<prompt>','set the prompt for the current channel.'),
                        'start_voting':('','starts voting for the current channel.'),
                        'results':('[elimination]','get the results for the current mTWOW. Specify elimination amount using a number or percentage using `%`. Defaults to 20%.'),
                        'transfer':('<user>','transfer ownership of mtwow to someone else.'),
                        'delete':('','delete the current mtwow.')
                    }
                    n = len(max(list(commands.keys()), key=lambda x:len(x)))
                    
                    d = '**TWOWBot help:**\n'
                    
                    if not raw_args:
                        d += '\n'.join(['`{}{} {}` - {}'.format(PREFIX,i[0], i[1][0], i[1][1]) for i in commands.items()])
                    else:
                        while '  ' in raw_args:
                            raw_args = raw_args.replace('  ', ' ')
                        raw_args = raw_args.strip()
                        raw_args = raw_args.replace('\n', ' ')
                        
                        passed = list(set(raw_args.split(' ')))
                                        
                        for i in passed:
                            if i in commands:
                                d += '`{}{} {}` - {}\n'.format(PREFIX, i, commands[i][0], commands[i][1])
                            else:
                                d += '`{}{}` - Command not found\n'.format(PREFIX, i.replace('@', '@\u200b').replace('`', '`\u200b'))
                        d = d[:-1]
                        
                    d += '\n*Made by Bottersnike#3605, hanss314#0128 and Noahkiq#0493*'
                    await send_message(message.channel, d)
                    
                elif command == 'about':  # Get the RickBot invite url
                    mess = '**This bot was developed by:**\n'
                    mess += 'Bottersnike#3605\n'
                    mess += 'hanss314#0128\n'
                    mess += 'Noahkiq#0493\n'
                    mess += '\n**This bot is being hosted by:**\n'
                    mess += '{}\n'.format(self.get_user(BOT_HOSTER))
                    #mess +='**\nTWOWBot\'s avatar by:**\n'
                    #mess += 'name#discrim\n'
                    mess += '\n**Resources:**\n'
                    mess += '*The official TWOWBot discord server:* https://discord.gg/eZhpeMM\n'
                    mess += '*Go contribute to TWOWBot on GitHub:* https://github.com/HTSTEM/TWOW_Bot\n'
                    mess += '*Invite TWOWBot to your server:* <https://discordapp.com/oauth2/authorize?client_id={}&scope=bot>'.format(self.user.id)
                    await send_message(message.channel, mess)
                        
                elif command in ['me', 'boutme', '\'boutme', 'aboutme']:
                    member = message.author
                    
                    now = datetime.datetime.utcnow()
                    joined_days = now - member.joined_at
                    created_days = now - member.created_at
                    avatar = member.avatar_url

                    embed = discord.Embed(colour=member.colour)
                    embed.add_field(name='Nickname', value=member.display_name)
                    embed.add_field(name='User ID', value=member.id)
                    embed.add_field(name='Avatar', value='[Click here to show]({})'.format(avatar))

                    embed.add_field(name='Created', value=member.created_at.strftime('%x %X') + '\n{} days ago'.format(max(0, created_days.days)))
                    embed.add_field(name='Joined', value=member.joined_at.strftime('%x %X') + '\n{} days ago'.format(max(0, joined_days.days)))
                    roles = '\n'.join([r.mention for r in sorted(member.roles, key=lambda x:x.position, reverse=True) if r.name != '@everyone'])
                    if roles == '': roles = '\@everyone'
                    embed.add_field(name='Roles', value=roles)

                    embed.set_author(name=member, icon_url=avatar)

                    try:
                        await message.channel.send(embed=embed)
                    except discord.errors.Forbidden:
                        pass
                
                elif command == 'ping':
                    await send_message(message.channel, 'Pong')
                
                # TWOW-Bot ready!
                elif command == 'id':  # Gets the server ID used in voting
                    if message.channel.id in self.servers:
                        await send_message(message.channel, 
                            'This mTWOW\'s identifier is `{}`'.format(self.servers[message.channel.id]))
                    else:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data. If this is an error, please contact {}.'.format(self.get_user(BOT_HOSTER)))
                elif command == 'prompt':  # Gets the current prompt
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {}
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    round = sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])]
                    
                    if round['prompt'] is None:
                        await send_message(message.channel, 'There\'s no prompt set yet for this mTWOW.')
                        return
                    
                    await send_message(message.channel, 'The current prompt is:\n{}\n'.format(round['prompt'].decode('utf-8')))
                elif command == 'season':  # Gets the current season number
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    
                    await send_message(message.channel, 'We are on season {}'.format(sd['season']))
                elif command == 'round':  # Get the current round number
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    
                    await send_message(message.channel, 'We are on round {}'.format(sd['round']))
                elif command == 'vote':  # I think it makes me a hot dog. Not sure.
                    if not isinstance(message.channel, discord.abc.PrivateChannel):
                        await message.delete()
                        await send_message(message.channel, 'Please only vote in DMs')
                        return
                    
                    if len(args) > 2 or not args[0]:
                        await send_message(message.channel, 
                            'Usage: `{}vote <TWOW id> [vote]\nUse `.id` in the channel to get the id.'.format(PREFIX))
                        return
                    
                    id = args[0]
                    
                    s_ids = {i[1]:i[0] for i in self.servers.items()}
                    
                    if id not in s_ids:
                        await send_message(message.channel, 'I can\'t find any mTWOW under the name `{}`.'.format(id.replace('`', '\\`')))
                        return
                    
                    sd = self.server_data[s_ids[id]]
                    
                    if not sd['voting']:
                        await send_message(message.channel, 'Voting hasn\'t started yet. Sorry.')
                        return
                    
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {}
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    round = sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])]
                    
                    if len(args) == 1:  # New slides needed!
                        if message.author.id not in round['slides']:
                            # Sort all responses based off their number of votes
                            responses = [[i, 0] for i in round['responses']]
                            for i in responses:
                                if i[0] == message.author.id:
                                    responses.remove(i)
                            for vote in round['votes']:
                                # Each vote is a list of user IDs going from best to worst
                                for i in vote['vote']:
                                    for r in responses:
                                        if r[0] == i:
                                            r[1] += 1
                                            break
                                    else:
                                        if i != message.author.id:
                                            responses.append([i, 1])
                            responses.sort(key=lambda x:x[1])

                            if len(responses) < 2:
                                await send_message(message.author, 'I don\'t have enough responses to formulate a slide. Sorry.')
                                return
                            
                            # ~~Calculate the nubmer of responses per slide~~ Global at start of file.
                            # Take that many items from the list of responses.
                            
                            slide = responses[:RESPONSES_PER_SLIDE]
                            slide = [i[0] for i in slide]
                            random.shuffle(slide)
                            
                            # Save as a slide.
                            
                            round['slides'][message.author.id] = slide
                            
                            save_data()
                        
                        slide = round['slides'][message.author.id]
                        
                        m = '**Your slide is:**'
                        for n, i in enumerate(slide):
                            m += '\n:regional_indicator_{}: {}'.format(string.ascii_lowercase[n], round['responses'][i].decode())
                            if len(m) > 1500:
                                await send_message(message.channel,m)
                                m = ''
                        if m:
                            await send_message(message.channel,m)
                    else:
                        id, vote_str = raw_args.upper().split(' ')
                        if message.author.id not in round['slides']:
                            await send_message(message.author, 'You don\'t have a voting slide *to* vote on!\nUse `.vote {}` to generate one.'.format(id))
                            return
                            
                        slide = round['slides'][message.author.id]
                        to = string.ascii_uppercase[len(slide) - 1]
                        regex = '[A-{}]{{{}}}'.format(to, len(slide))
                        if not re.compile(regex).match(vote_str):
                            await send_message(message.author, 'Please vote for **every** item on your slide exactly **once**.')
                            return
                        
                        if len(set(vote_str)) != len(vote_str):  # Check for repeats
                            await send_message(message.author, 'Please vote for **every** item on your slide exactly **once**.')
                            return
                        
                        vote = list(vote_str)
                        for n, i in enumerate(vote):
                            vote[n] = slide[string.ascii_uppercase.index(i)]
                        
                        round['votes'].append({
                            'voter': message.author.id,
                            'vote': vote
                        })
                        
                        del round['slides'][message.author.id]
                        save_data()
                        
                        await send_message(message.channel, 'Thanks for voting!')
                elif command == 'respond':  # Probbly handles the controlling of my kitten army
                    if not isinstance(message.channel, discord.abc.PrivateChannel):
                        await message.delete()
                        await send_message(message.channel, 'Please only respond in DMs')
                        return
                    
                    if len(args) < 2:
                        await send_message(message.channel, 
                            'Usage: `{}respond <TWOW id> <response>`\nUse `.id` in the channel to get the id.'.format(PREFIX))
                        return
                    
                    id, response = raw_args.split(' ', 1)
                    s_ids = {i[1]:i[0] for i in self.servers.items()}
                    
                    if id not in s_ids:
                        await send_message(message.channel, 'I can\'t find any mTWOW under the name `{}`.'.format(id.replace('`', '\\`')))
                        return
                    
                    sd = self.server_data[s_ids[id]]
                    
                    if sd['voting']:
                        await send_message(message.channel, 'Voting has already started. Sorry.')
                        return
                    
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {}
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    round = sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])]
                    
                    if round['prompt'] is None:
                        await send_message(message.channel, 'There\'s no prompt.. How can you even?')
                        return
                    '''
                    for role in self.get_channel(s_ids[id]).guild.roles:
                        if role.id == sd['ids']['alive']:
                            alive_role = role
                            break
                    else:
                        alive_role = None'''
                    member = self.get_channel(s_ids[id]).guild.get_member(int(message.author.id))
                    if sd['round'] > 1 and message.author.id not in sd['alive']:
                        await send_message(message.channel, 'You are unable to submit this round. Please wait for the next season.')
                        return
                    elif sd['round'] == 1 and message.author.id not in sd['alive']:
                        sd['alive'].append(member.id)
                    
                    if message.author.id in round['responses']:
                        await send_message(message.channel, '**Warning! Overwriting current response!**')
                    if len(response.split(' ')) > 10:
                        await send_message(message.channel, '**Warning! Your response looks to be over 10 words ({}).**\nThis can be ignored if you are playing a variation TWOW that doesn\'t have this limit'.format(len(response.split(' '))))
                    if len(response) > 140:
                        await send_message(message.channel, 'That is a lot of characters. Why don\'t we tone it down a bit?')
                        return
                    
                    changed = False
                    with open('banned_words.txt') as bw:
                        banned_w = bw.read().split('\n')
                    for i in banned_w:
                        if i:
                            pattern = re.compile(i, re.IGNORECASE)
                            if pattern.match(response):
                                response = pattern.sub('\\*' * len(i), response)
                                print(response)
                                changed = True
                    if changed:
                        await send_message(message.channel, '**Due to rude words, your submission has been changed to:**\n{}'.format(response))
                    
                    round['responses'][message.author.id] = response.encode('utf-8')
                    await send_message(message.channel, '**Submission recorded**')
                    
                    save_data()
                        
                # TWOW owner only commands
                elif command == 'start_voting':
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    
                    if sd['owner'] != message.author.id:
                        return
                    
                    if sd['voting']:
                        await send_message(message.channel, 'Voting is already active.')
                        return
                    roundn = sd['round']
                    seasonn = sd['season']
                    if len(sd['seasons']['season-{}'.format(seasonn)]['rounds']['round-{}'.format(roundn)]['responses']) < 2:
                        await send_message(message.channel, 'There aren\'t enough responses to start voting. You need at least 2.')
                        return
                    
                    sd['voting'] = True
                    save_data()
                    await send_message(message.channel, 'Voting has been activated.')
                    return
                elif command == 'results':  # Woah? Results. Let's hope I know how to calculate these.. Haha. I didn't.
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    
                    if sd['owner'] != message.author.id:
                        return
                    
                    if not sd['voting']:
                        await send_message(message.channel, 'Voting hasn\'t even started yet...')
                        return
                    
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {}
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    round = sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])]                        
                    
                    totals = {}
                    for r in round['responses']:
                        totals[r] = {'borda': 0, 'votes': 0, 'raw_borda': []}
                    
                    vote_weights = {}
                    
                    for vote in round['votes']:
                        if vote['voter'] not in vote_weights:
                            vote_weights['voter'] = 1
                        else:
                            vote_weights['voter'] += 1
                    for i in vote_weights:
                        vote_weights[i] = 1 / vote_weights[i]
                    
                    for vote in round['votes']:
                        c = len(vote['vote'])
                        for n, v in enumerate(vote['vote']):
                            bc = c - n - 1
                            totals[v]['borda'] += bc
                            totals[v]['votes'] += 1
                            totals[v]['raw_borda'].append(bc / (c - 1) * 100)
                    
                    totals = [{'name': i[0], **i[1]} for i in totals.items()]
                    
                    
                    
                    def f(v):
                        return (v['borda'] / v['votes']) / (len(round['votes'][0]['vote']) - 1) * 100
                    
                    totals.sort(key=f, reverse=True)
                    for twower in sd['alive']:
                        if twower not in round['responses']:
                            round['responses'][twower] = '*DNP*'.encode('UTF-8')
                            totals.append({'name': twower, 'borda': 0, 'votes': 1, 'raw_borda': [0]})
                    msg = '**Results for round {}, season {}:**'.format(sd['round'], sd['season'])
                    
                    await message.delete()
                    await send_message(message.channel,msg)
                    
                    eliminated = []
                    living = []
                    
                    elim = int(0.8 * len(totals))
                    if len(args) > 0 and args[0] != '':
                        nums = args[0]
                        try:
                            if nums[-1] == '%':
                                elim = len(totals)*(100-int(nums[:-1]))//100
                            else:
                                elim = len(totals) - int(nums)
                        except ValueError:
                            await send_message(message.channel, '{} doesn\'t look like a number to me.'.format(nums))
                            return
                    
                    for n, v in list(enumerate(totals))[::-1]:
                        score = f(v)
  
                        mean = sum(v['raw_borda']) / len(v['raw_borda'])
                        variance = sum((i - mean) ** 2 for i in v['raw_borda']) / len(v['raw_borda'])
                        stdev = variance ** 0.5
                    
                        user = message.guild.get_member(v['name'])
                        if user is not None:
                            name = user.mention
                        else:
                            name = str(v['name'])
                    
                        if str(n + 1)[-1] == '1':
                            if n + 1 == 11:
                                symbol = SUPERSCRIPT[3]
                            else:
                                symbol = SUPERSCRIPT[0]
                        elif str(n + 1)[-1] == '2':
                            if n + 1 == 12:
                                symbol = SUPERSCRIPT[3]
                            else:
                                symbol = SUPERSCRIPT[1]
                        elif str(n + 1)[-1] == '3':
                            if n + 1 == 13:
                                symbol = SUPERSCRIPT[3]
                            else:
                                symbol = SUPERSCRIPT[2]
                        else:
                            symbol = SUPERSCRIPT[3]
                            

                        dead = n >= elim
                        if dead:
                            if user.id in sd['alive']:
                                sd['alive'].remove(user.id)
                            eliminated.append((name, user, v))
                        else:
                            living.append((name, user, v))
                        
                        msg = '\n{}\n{} **{}{} place**: *{}*\n**{}** ({}% σ={})'.format('=' * 50, ':coffin:' if dead else ':white_check_mark:', n + 1, symbol, round['responses'][v['name']].decode('utf-8'), name, builtins.round(score, 2), builtins.round(stdev, 2))

                        await asyncio.sleep(len(totals) - n / 2)
                        await send_message(message.channel,msg)  
                    user = message.guild.get_member(totals[0]['name'])
                    if user is not None:
                        name = user.mention
                    else:
                        name = str(v['name'])
                    msg = '{}\nThe winner was {}! Well done!'.format('=' * 50, name)
                    await send_message(message.channel,msg)  
                    
                    await send_message(message.channel,
                        'Sadly though, we have to say goodbye to {}.'.format(', '.join([i[0] for i in eliminated])))
                    '''
                    for role in message.guild.roles:
                        if role.id == sd['ids']['alive']:
                            alive_role = role
                            break
                    else:
                        alive_role = None
                    for role in message.guild.roles:
                        if role.id == sd['ids']['dead']:
                            dead_role = role
                            break
                    else:
                        dead_role = None'''
                    
                    # Do all the round incrementing and stuff.
                    if len(totals) - len(eliminated) <= 1:
                        await send_message(message.channel,'**This season has ended! The winner was {}!**'.format(name))
                        sd['round'] = 1
                        sd['season'] += 1
                    else:
                        sd['round'] += 1
                        await send_message(message.channel,'**We\'re now on round {}!**'.format(sd['round']))
                        
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {'rounds':{}}
                        sd['alive'] = []
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    sd['voting'] = False
                    
                    save_data()
                    
                    # Oh yeah, and kill off dead people
                    '''
                    if alive_role is not None and dead_role is not None:
                        if message.guild.large:
                            await self.request_offline_members(message.channel)
                        for e in eliminated:
                            if e[1] is not None:
                                if alive_role in e[1].roles:
                                    await e[1].remove_roles(alive_role, reason='Contestant eliminated')
                                    if dead_role is not None:
                                        await e[1].add_roles(dead_role, reason='Contestant eliminated')
                                                
                        
                        alive_r = None
                        
                        for member in message.guild.members:
                            if alive_r is None:
                                for role in member.roles:
                                    if role.id == ALIVE_ID:
                                        alive_r = role
                            
                            if alive_r is not None and alive_r in member.roles:
                                for i in living:
                                    if i[1] == member:
                                        break
                                else:
                                    await member.remove_roles(alive_r, reason='Contestant eliminated')
                        '''
                elif command == 'responses':  # List all responses this round
                    id = None
                    if len(args) > 0 and args[0] != '':
                        s_ids = {i[1]:i[0] for i in self.servers.items()}
                        if args[0] not in s_ids:
                            await send_message(message.channel, 'I can\'t find any mTWOW under the name `{}`.'.format(id.replace('`', '\\`')))
                            return
                        id = s_ids[args[0]]
                    else:
                        if message.channel.id not in self.servers:
                            await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                            return
                        id = message.channel.id
                        
                    if self.server_data[id]['owner'] != message.author.id:
                        return
                        
                    sd = self.server_data[id]
                    
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {}
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    round = sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])]
                    
                    m = '**Responses for season {}, round {} so far:**'.format(sd['season'], sd['round'])
                    for i in round['responses'].items():
                        u = self.get_user(i[0])
                        if u is not None:
                            n = u.name
                        else:
                             n = i[0]
                        m += '\n**{}**: {}'.format(n, i[1].decode('utf-8'))
                        if len(m) > 1500:
                            await send_message(message.author,m)
                            m = ''
                    if m:
                        await send_message(message.author,m)
                    if isinstance(message.channel, discord.TextChannel):
                        await send_message(message.channel,':mailbox_with_mail:')
                elif command == 'register':  # Setup channel initially
                    if message.channel.id in self.servers:
                        owner = self.get_user(self.server_data[message.channel.id]['owner'])
                        if owner is not None:
                            await send_message(message.channel, 'This channel is already setup. The owner is {}.'.format(owner.name.replace('@', '@\u200b')))
                        else:
                            await send_message(message.channel, 
                                'I can\'t find the owner of this mTWOW. Please contact {} to resolve this.'.format(self.get_user(BOT_HOSTER)))
                    else:
                        if not message.channel.permissions_for(message.author).manage_channels:#if user can manage that channel
                            return
                        bot_perms = message.channel.permissions_for(message.guild.get_member(self.user.id))
                        if not (bot_perms.send_messages and bot_perms.read_messages): #add any other perms you can think of
                            return
                        if raw_args:
                            if ' ' in raw_args:
                                await send_message(message.channel, 'No spaces in the identifier please')
                                return
                            if raw_args in list(self.servers.values()):
                                await send_message(message.channel, 'There\'s already a mTWOW setup with that name. Sorry.')
                                return
                            
                            s = {}
                            s['owner'] = message.author.id
                            s['round'] = 1
                            s['season'] = 1
                            s['voting'] = False
                            s['alive'] = []
                            s['seasons'] = {'season-1':
                                            {'rounds':
                                             {'round-1':
                                              {'prompt': None,
                                               'responses': {},
                                               'slides': {},
                                               'votes': [],
                                              }
                                             }
                                            }
                                           }
                            
                            self.server_data[message.channel.id] = s
                            self.servers[message.channel.id] = raw_args
                            
                            save_data()
                        
                            await send_message(message.channel, 
                                'Woah! I just set up a whole mTWOW for you under the name `{}`'.format(
                                    raw_args.replace('@', '@\u200b').replace('`', '\\`')))
                        else:
                            await send_message(message.channel, 'Usage: `{}register <short identifier>'.format(PREFIX))
                
                elif command == 'setup':  # Set congifs
                    pass
                    '''
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this server in my data.')
                        return
                        
                    if self.server_data[message.channel.id]['owner'] != message.author.id:
                        return

                    if len(args) < 2:
                        await send_message(message.channel, 'Usage: `.setup <key> <value>`\nWhere key is one of `dead`, `alive`, `nts` and the value is the ID of the user or role.\nUse `.role_ids` to get the IDs of the roles.')
                        return
                    key, value = raw_args.lower().split(' ', 1)
                    
                    if key not in ['dead', 'alive', 'nts']:
                        await send_message(message.channel, 'The key must be `dead`, `alive` or `nts`.')
                        return
                    
                    try:
                        value = int(value)
                    except ValueError:
                        await send_message(message.channel, 'The value must be an id (as an integer).')
                        return
                    
                    self.server_data[message.channel.id]['ids'][key] = value
                    save_data()
                    
                    await send_message(message.channel, 'Wubba lubba dub dub! (Done)')
                    '''
                elif command == 'show_config':
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                        
                    if self.server_data[message.channel.id]['owner'] != message.author.id:
                        return
                    
                    with open('./server_data/{}.yml'.format(message.channel.id), 'rb') as server_file:
                        await message.channel.send(file=discord.File(server_file))
                elif command == 'set_prompt':  # Summon unicorns
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    
                    if sd['owner'] != message.author.id:
                        return
                    
                    # If you're someone who likes all code to look pristine, I appologise for the next few lines :'(
                    if 'season-{}'.format(sd['season']) not in sd['seasons']:
                        sd['seasons']['season-{}'.format(sd['season'])] = {}
                    if 'round-{}'.format(sd['round']) not in sd['seasons']['season-{}'.format(sd['season'])]['rounds']:
                        sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])] = {'prompt': None, 'responses': {}, 'slides': {}, 'votes': []}
                    
                    round = sd['seasons']['season-{}'.format(sd['season'])]['rounds']['round-{}'.format(sd['round'])]
                    
                    if round['prompt'] is None:
                        round['prompt'] = raw_args.replace('@', '@\u200b').replace('`', '\\`').encode('utf-8')
                        save_data()
                        await send_message(message.channel, 'The prompt has been set to `{}` for this round.'.format(raw_args.replace('@', '@\u200b').replace('`', '\\`')))
                        return
                    else:
                        await send_message(message.channel, 'The prompt has been changed from `{}` to `{}` for this round.'.format(round['prompt'].decode('utf-8'), raw_args.replace('@', '@\u200b').replace('`', '\\`')))
                        round['prompt'] = raw_args.replace('@', '@\u200b').replace('`', '\\`').encode('utf-8')
                        save_data()
                        return
                
                elif command == 'transfer':
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    sd = self.server_data[message.channel.id]
                    if sd['owner'] != message.author.id:
                        return
                    
                    if len(message.mentions) == 0:
                        await send_message(message.channel, 'Usage: `{}transfer <User>`'.format(PREFIX))
                        return
                    
                    def check(m):
                        return m.channel == message.channel and m.author == message.author and m.content[0].lower() in ['y','n']
                    
                    await send_message(message.channel, 
                        'You are about to transfer your mtwow to {}. Are you 100 percent, no regrets, absolutely and completely sure about this? (y/N) Choice will default to no in 60 seconds.'.format(message.mentions[0].name))
                    resp = None
                    try:
                        resp = await self.wait_for('message', check=check, timeout=60)
                    except asyncio.TimeoutError:
                        await send_message(message.channel, 'Transfer Cancelled.')
                        return
                    
                    if resp.content[0].lower() != 'y':
                        await send_message(message.channel, 'Transfer Cancelled.')
                        return

                    sd['owner'] = message.mentions[0].id
                    save_data()
                    await send_message(message.channel, 'MTWOW has been transfered to {}.'.format(message.mentions[0].name))
                    
                elif command == 'delete':
                    if message.channel.id not in self.servers:
                        await send_message(message.channel, 'There isn\'t an entry for this mTWOW in my data.')
                        return
                    
                    if sd['owner'] != message.author.id:
                        return
                    
                    def check(m):
                        return m.channel == message.channel and m.author == message.author and m.content[0].lower() in ['y','n']
                    
                    await send_message(message.channel, 
                        'You are about to delete your mtwow. Are you 100 percent, no regrets, absolutely and completely sure about this? (y/N) Choice will default to no in 60 seconds.')
                    resp = None
                    try:
                        resp = await self.wait_for('message', check=check, timeout=60)
                    except asyncio.TimeoutError:
                        await send_message(message.channel, 'Deletion Cancelled.')
                        return
                    
                    if resp.content[0].lower() != 'y':
                        await send_message(message.channel, 'Deletion Cancelled.')
                        return
                    
                    save_archive(message.channel.id)
                    self.servers.pop(message.channel.id, None)
                    self.server_data.pop(message.channel.id,None)
                    save_data()
                    await send_message(message.channel, 'MTWOW has been deleted.')
Ejemplo n.º 43
0
def subcellularConn(self, allCellTags, allPopTags):
    from .. import sim

    sim.timing('start', 'subConnectTime')
    print('  Distributing synapses based on subcellular connectivity rules...')

    for subConnParamTemp in list(self.params.subConnParams.values()
                                 ):  # for each conn rule or parameter set
        subConnParam = subConnParamTemp.copy()

        # find list of pre and post cell
        preCellsTags, postCellsTags = self._findPrePostCellsCondition(
            allCellTags, subConnParam['preConds'], subConnParam['postConds'])

        if preCellsTags and postCellsTags:
            # iterate over postsyn cells to redistribute synapses
            for postCellGid in postCellsTags:  # for each postsyn cell
                if postCellGid in self.gid2lid:
                    postCell = self.cells[self.gid2lid[postCellGid]]
                    allConns = [
                        conn for conn in postCell.conns
                        if conn['preGid'] in preCellsTags
                    ]
                    if 'NetStim' in [
                            x['cellModel'] for x in list(preCellsTags.values())
                    ]:  # temporary fix to include netstim conns
                        allConns.extend([
                            conn for conn in postCell.conns
                            if conn['preGid'] == 'NetStim'
                        ])

                    # group synMechs so they are not distributed separately
                    if 'groupSynMechs' in subConnParam:
                        conns = []
                        connsGroup = {}
                        #iConn = -1
                        for conn in allConns:
                            if not conn['synMech'].startswith('__grouped__'):
                                conns.append(conn)
                                #iConn = iConn + 1
                                connGroupLabel = '%d_%s_%.4f' % (
                                    conn['preGid'], conn['sec'], conn['loc'])
                                if conn['synMech'] in subConnParam[
                                        'groupSynMechs']:
                                    for synMech in [
                                            s for s in
                                            subConnParam['groupSynMechs']
                                            if s != conn['synMech']
                                    ]:
                                        connGroup = next(
                                            (c for c in allConns
                                             if c['synMech'] == synMech
                                             and c['sec'] == conn['sec']
                                             and c['loc'] == conn['loc']),
                                            None)
                                        try:
                                            connGroup[
                                                'synMech'] = '__grouped__' + connGroup[
                                                    'synMech']
                                            connsGroup[
                                                connGroupLabel] = connGroup
                                        except:
                                            print(
                                                '  Warning: Grouped synMechs %s not found'
                                                % (str(connGroup)))
                    else:
                        conns = allConns

                    # sort conns so reproducible across different number of cores
                    # use sec+preGid to avoid artificial distribution based on preGid (e.g. low gids = close to soma)
                    conns = sorted(conns,
                                   key=lambda v: v['sec'] + str(v['loc']) +
                                   str(v['preGid']))

                    # set sections to be used
                    secList = postCell._setConnSections(subConnParam)

                    # Uniform distribution
                    if subConnParam.get('density', None) == 'uniform':
                        # calculate new syn positions
                        newSecs, newLocs = postCell._distributeSynsUniformly(
                            secList=secList, numSyns=len(conns))

                    # 2D map and 1D map (radial)
                    elif isinstance(
                            subConnParam.get('density', None),
                            dict) and subConnParam['density']['type'] in [
                                '2Dmap', '1Dmap'
                            ]:

                        gridY = subConnParam['density']['gridY']
                        gridSigma = subConnParam['density']['gridValues']
                        somaX, somaY, _ = self._posFromLoc(
                            postCell.secs['soma']['hObj'],
                            0.5)  # get cell pos move method to Cell!
                        if 'fixedSomaY' in subConnParam[
                                'density']:  # is fixed cell soma y, adjust y grid accordingly
                            fixedSomaY = subConnParam['density'].get(
                                'fixedSomaY')
                            gridY = [
                                y + (somaY - fixedSomaY) for y in gridY
                            ]  # adjust grid so cell soma is at fixedSomaY

                        if subConnParam['density']['type'] == '2Dmap':  # 2D
                            gridX = [
                                x - somaX
                                for x in subConnParam['density']['gridX']
                            ]  # center x at cell soma
                            segNumSyn = self._interpolateSegmentSigma(
                                postCell, secList, gridX, gridY,
                                gridSigma)  # move method to Cell!
                        elif subConnParam['density']['type'] == '1Dmap':  # 1D
                            segNumSyn = self._interpolateSegmentSigma(
                                postCell, secList, None, gridY,
                                gridSigma)  # move method to Cell!

                        totSyn = sum([
                            sum(nsyn) for nsyn in list(segNumSyn.values())
                        ])  # summed density
                        scaleNumSyn = float(
                            len(conns)) / float(totSyn) if totSyn > 0 else 0.0
                        diffList = []
                        for sec in segNumSyn:
                            for seg, x in enumerate(segNumSyn[sec]):
                                orig = float(x * scaleNumSyn)
                                scaled = int(round(x * scaleNumSyn))
                                segNumSyn[sec][seg] = scaled
                                diff = orig - scaled
                                if diff > 0:
                                    diffList.append([diff, sec, seg])

                        totSynRescale = sum(
                            [sum(nsyn) for nsyn in list(segNumSyn.values())])

                        # if missing syns due to rescaling to 0, find top values which were rounded to 0 and make 1
                        if totSynRescale < len(conns):
                            extraSyns = len(conns) - totSynRescale
                            diffList = sorted(diffList,
                                              key=lambda l: l[0],
                                              reverse=True)
                            for i in range(min(extraSyns, len(diffList))):
                                sec = diffList[i][1]
                                seg = diffList[i][2]
                                segNumSyn[sec][seg] += 1

                        # convert to list so can serialize and save
                        subConnParam['density']['gridY'] = list(
                            subConnParam['density']['gridY'])
                        subConnParam['density']['gridValues'] = list(
                            subConnParam['density']['gridValues'])

                        newSecs, newLocs = [], []
                        for sec, nsyns in segNumSyn.items():
                            for i, seg in enumerate(
                                    postCell.secs[sec]['hObj']):
                                for isyn in range(nsyns[i]):
                                    newSecs.append(sec)
                                    newLocs.append(seg.x)

                    # Distance-based
                    elif subConnParam.get('density', None) == 'distance':
                        # find origin section
                        if 'soma' in postCell.secs:
                            secOrig = 'soma'
                        elif any([
                                secName.startswith('som')
                                for secName in list(postCell.secs.keys())
                        ]):
                            secOrig = next(
                                secName
                                for secName in list(postCell.secs.keys())
                                if secName.startswith('soma'))
                        else:
                            secOrig = list(postCell.secs.keys())[0]

                        #print self.fromtodistance(postCell.secs[secOrig](0.5), postCell.secs['secs'][conn['sec']](conn['loc']))

                        # different case if has vs doesn't have 3d points
                        #  h.distance(sec=h.soma[0], seg=0)
                        # for sec in apical:
                        #    print h.secname()
                        #    for seg in sec:
                        #      print seg.x, h.distance(seg.x)

                    for i, (conn, newSec,
                            newLoc) in enumerate(zip(conns, newSecs, newLocs)):

                        # get conn group label before updating params
                        connGroupLabel = '%d_%s_%.4f' % (
                            conn['preGid'], conn['sec'], conn['loc'])

                        # update weight if weightNorm present
                        if 'weightNorm' in postCell.secs[
                                conn['sec']] and isinstance(
                                    postCell.secs[conn['sec']]['weightNorm'],
                                    list):
                            oldNseg = postCell.secs[
                                conn['sec']]['geom']['nseg']
                            oldWeightNorm = postCell.secs[
                                conn['sec']]['weightNorm'][
                                    int(round(conn['loc'] * oldNseg)) - 1]
                            newNseg = postCell.secs[newSec]['geom']['nseg']
                            newWeightNorm = postCell.secs[newSec]['weightNorm'][
                                int(round(newLoc * newNseg)) -
                                1] if 'weightNorm' in postCell.secs[
                                    newSec] else 1.0
                            conn['weight'] = conn[
                                'weight'] / oldWeightNorm * newWeightNorm

                        # avoid locs at 0.0 or 1.0 - triggers hoc error if syn needs an ion (eg. ca_ion)
                        if newLoc == 0.0: newLoc = 0.00001
                        elif newLoc == 1.0: newLoc = 0.99999

                        # updade sec and loc
                        conn['sec'] = newSec
                        conn['loc'] = newLoc

                        # find grouped conns
                        if subConnParam.get(
                                'groupSynMechs', None
                        ) and conn['synMech'] in subConnParam['groupSynMechs']:

                            connGroup = connsGroup[
                                connGroupLabel]  # get grouped conn from previously stored dict
                            connGroup['synMech'] = connGroup['synMech'].split(
                                '__grouped__')[1]  # remove '__grouped__' label

                            connGroup['sec'] = newSec
                            connGroup['loc'] = newLoc
                            if newWeightNorm:
                                connGroup['weight'] = connGroup[
                                    'weight'] / oldWeightNorm * newWeightNorm

        sim.pc.barrier()
Ejemplo n.º 44
0
def convConn(self, preCellsTags, postCellsTags, connParam):
    """
    Function for/to <short description of `netpyne.network.conn.convConn`>

    Parameters
    ----------
    self : <type>
        <Short description of self>
        **Default:** *required*

    preCellsTags : <type>
        <Short description of preCellsTags>
        **Default:** *required*

    postCellsTags : <type>
        <Short description of postCellsTags>
        **Default:** *required*

    connParam : <type>
        <Short description of connParam>
        **Default:** *required*

"""

    from .. import sim

    if sim.cfg.verbose:
        print('Generating set of convergent connections (rule: %s) ...' %
              (connParam['label']))

    # get list of params that have a lambda function
    paramsStrFunc = [
        param for param in [p + 'Func' for p in self.connStringFuncParams]
        if param in connParam
    ]

    # copy the vars into args immediately and work out which keys are associated with lambda functions only once per method
    funcKeys = {}
    for paramStrFunc in paramsStrFunc:
        connParam[paramStrFunc + 'Args'] = connParam[paramStrFunc +
                                                     'Vars'].copy()
        funcKeys[paramStrFunc] = [
            key for key in connParam[paramStrFunc + 'Vars']
            if callable(connParam[paramStrFunc + 'Vars'][key])
        ]

    # converted to list only once
    preCellsTagsKeys = sorted(preCellsTags)

    # calculate hash for post cell gids
    hashPreCells = sim.hashList(preCellsTagsKeys)

    for postCellGid, postCellTags in postCellsTags.items(
    ):  # for each postsyn cell
        if postCellGid in self.gid2lid:  # check if postsyn is in this node
            convergence = connParam['convergenceFunc'][
                postCellGid] if 'convergenceFunc' in connParam else connParam[
                    'convergence']  # num of presyn conns / postsyn cell
            convergence = max(
                min(int(round(convergence)),
                    len(preCellsTags) - 1), 0)
            self.rand.Random123(hashPreCells, postCellGid,
                                sim.cfg.seeds['conn'])  # init randomizer
            randSample = self.randUniqueInt(self.rand, convergence + 1, 0,
                                            len(preCellsTags) - 1)

            # note: randSample[divergence] is an extra value used only if one of the random postGids coincided with the preGid
            preCellsSample = {
                preCellsTagsKeys[randSample[convergence]] if
                preCellsTagsKeys[i] == postCellGid else preCellsTagsKeys[i]: 0
                for i in randSample[0:convergence]
            }  # dict of selected gids of postsyn cells with removed post gid
            preCellsConv = {
                k: v
                for k, v in preCellsTags.items() if k in preCellsSample
            }  # dict of selected presyn cells tags

            for preCellGid, preCellTags in preCellsConv.items(
            ):  # for each presyn cell

                for paramStrFunc in paramsStrFunc:  # call lambda functions to get weight func args
                    # update the relevant FuncArgs dict where lambda functions are known to exist in the corresponding FuncVars dict
                    for funcKey in funcKeys[paramStrFunc]:
                        connParam[paramStrFunc + 'Args'][funcKey] = connParam[
                            paramStrFunc + 'Vars'][funcKey](preCellTags,
                                                            postCellTags)

                if preCellGid != postCellGid:  # if not self-connection
                    self._addCellConn(connParam, preCellGid,
                                      postCellGid)  # add connection
Ejemplo n.º 45
0
def round(iterable, pred):
    return (builtins.round(x, pred) for x in iterable)
Ejemplo n.º 46
0
def brevity_penalty(c, r):
    if c > r:
        bp = 1
    else:
        bp = math.exp(1-(float(r)/c))

    return bp


def geometric_mean(precisions):
    return (reduce(operator.mul, precisions)) ** (1.0 / len(precisions))


def BLEU(candidate, references):
    precisions = []
    for i in range(4):
        pr, bp = count_ngram(candidate, references, i+1)
        precisions.append(pr)
        print('P'+str(i+1), ' = ',round(pr, 2))
    print('BP = ',round(bp, 2))
    bleu = geometric_mean(precisions) * bp
    return bleu

if __name__ == "__main__":
    candidate, references = fetch_data(sys.argv[1], sys.argv[2])
    bleu = BLEU(candidate, references)
    print('BLEU = ',round(bleu, 4))
    out = os.open('bleu_out.txt', 'w')
    out.write(str(bleu))
    out.close()
Ejemplo n.º 47
0
#=========================================================================
# This is OPEN SOURCE SOFTWARE governed by the Gnu General Public
# License (GPL) version 3, as described at www.opensource.org.
# Author: William H. Majoros ([email protected])
#=========================================================================
from __future__ import (absolute_import, division, print_function,
                        unicode_literals, generators, nested_scopes,
                        with_statement)
from builtins import (bytes, dict, int, list, object, range, str, ascii, chr,
                      hex, input, next, oct, open, pow, round, super, filter,
                      map, zip)
# The above imports should allow this program to run in both Python 2 and
# Python 3.  You might need to update your version of module "future".
import sys
import ProgramName
from StanParser import StanParser

#=========================================================================
# main()
#=========================================================================
if (len(sys.argv) < 3):
    exit(ProgramName.get() + " <infile.txt> <var1> <var2> ...\n")
infile = sys.argv[1]
variables = sys.argv[2:]

parser = StanParser(infile)
print("variable\tmedian\tSD")
for var in variables:
    (median, mean, SD, min, max) = parser.getSummary(var)
    print(var, round(median, 4), round(SD, 5), sep="\t")
evaluator = BinaryClassificationEvaluator()

paraGrid = ParamGridBuilder().addGrid(rf.numTrees, num_trees).build()

cv = CrossValidator(estimator=rf,
                    evaluator=evaluator,
                    numFolds=n_fold,
                    estimatorParamMaps=paraGrid)

cvmodel = cv.fit(train_df)

rfpredicts = cvmodel.bestModel.transform(valid_df)

print('RandomForestClassifier')
print(cvmodel.bestModel.getNumTrees)
print(round(evaluator.evaluate(rfpredicts), n_digits))
print('')

# step 3
GBT = GBTClassifier()
evaluator = BinaryClassificationEvaluator()  # areaUnderROC is default

paramGrid = ParamGridBuilder().addGrid(GBT.maxDepth, max_depth).build()

cv = CrossValidator(estimator=GBT,
                    evaluator=evaluator,
                    numFolds=n_fold,
                    estimatorParamMaps=paramGrid)

cvmodel = cv.fit(train_df)
Ejemplo n.º 49
0
def plotLFP(timeRange=None,
            electrodes=['avg', 'all'],
            plots=['timeSeries', 'PSD', 'spectrogram', 'locations'],
            NFFT=256,
            noverlap=128,
            nperseg=256,
            minFreq=1,
            maxFreq=100,
            stepFreq=1,
            smooth=0,
            separation=1.0,
            includeAxon=True,
            logx=False,
            logy=False,
            normSignal=False,
            normPSD=False,
            normSpec=False,
            filtFreq=False,
            filtOrder=3,
            detrend=False,
            transformMethod='morlet',
            maxPlots=8,
            overlay=False,
            colors=None,
            figSize=(8, 8),
            fontSize=14,
            lineWidth=1.5,
            dpi=200,
            saveData=None,
            saveFig=None,
            showFig=True):
    """Plots local field potentials.

    Parameters
    ----------
    timeRange : list [start, stop]
        Time range to plot.
        **Default:** 
        ``None`` plots entire time range

    electrodes : list
        List of electrodes to include; ``'avg'`` is the average of all electrodes; ``'all'`` is each electrode separately.
        **Default:** ``['avg', 'all']``
    
    plots : list
        List of plot types to show.
        **Default:** ``['timeSeries', 'PSD', 'spectrogram', 'locations']``
    
    NFFT : int (power of 2)
        Number of data points used in each block for the PSD and time-freq FFT. 
        **Default:** ``256``
    
    noverlap : int (<nperseg)
        Number of points of overlap between segments for PSD and time-freq.
        **Default:** ``128``
    
    nperseg
        Length of each segment for time-freq.
        **Default:** ``256``
    
    minFreq : float
        Minimum frequency shown in plot for PSD and time-freq.
        **Default:** ``1``
    
    maxFreq : float
        Maximum frequency shown in plot for PSD and time-freq.
        **Default:** ``100``
    
    stepFreq : float
        Step frequency.
        **Default:** ``1``
    
    smooth : int
        Window size for smoothing LFP; no smoothing if ``0``
        **Default:** ``0``
    
    separation : float
        Separation factor between time-resolved LFP plots; multiplied by max LFP value.
        **Default:** ``1.0``
    
    includeAxon : bool
        Whether to show the axon in the location plot.
        **Default:** ``True``
    
    logx : bool
        Whether to make x-axis logarithmic
        **Default:** ``False``
    
    logy : bool
        Whether to make y-axis logarithmic
        **Default:** ``False``
    
    normSignal : bool
        Whether to normalize the signal.
        **Default:** ``False``
    
    normPSD : bool
        Whether to normalize the power spectral density.
        **Default:** ``False, 
    
    normSpec : bool
        Needs documentation.
        **Default:** ``False``
    
    filtFreq : int or list
        Frequency for low-pass filter (int) or frequencies for bandpass filter in a list: [low, high]
        **Default:** ``False`` does not filter the data
    
    filtOrder : int
        Order of the filter defined by `filtFreq`.
        **Default:** ``3``
    
    detrend : bool
        Whether to detrend.
        **Default:** ``False``
    
    transformMethod : str
        Transform method.
        **Default:** ``'morlet'``
        **Options:** ``'fft'``

    maxPlots : int
        Maximum number of subplots. Currently unused.
        **Default:** ``8``

    overlay : bool
        Whether to overlay plots or use subplots.
        **Default:** ``False`` overlays plots.

    colors : list
        List of normalized RGB colors to use.
        **Default:** ``None`` uses standard colors

    figSize : list [width, height]
        Size of figure in inches.
        **Default:** ``(10, 8)`` 
    
    fontSize : int
        Font size on figure.
        **Default:** ``14`` 

    lineWidth : int
        Line width.
        **Default:** ``1.5``

    dpi : int
        Resolution of figure in dots per inch.
        **Default:** ``100``
    
    saveData : bool or str
        Whether and where to save the data used to generate the plot. 
        **Default:** ``False`` 
        **Options:** ``True`` autosaves the data,
        ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.pkl'`` and ``'.json'``
    
    saveFig : bool or str
        Whether and where to save the figure.
        **Default:** ``False``
        **Options:** ``True`` autosaves the figure,
        ``'/path/filename.ext'`` saves to a custom path and filename, valid file extensions are ``'.png'``, ``'.jpg'``, ``'.eps'``, and ``'.tiff'``
    
    showFig : bool
        Shows the figure if ``True``.
        **Default:** ``True``

    Returns
    -------
    (figs, dict)
        A tuple consisting of the matplotlib figure handles and a dictionary containing the plot data.

    See Also
    --------
    iplotLFP :

    Examples
    --------
    >>> import netpyne, netpyne.examples.example
    >>> out = netpyne.analysis.plotLFP()
    """

    # Note: should probably split funcs for signal, psd, spectrogram and locs

    from .. import sim
    from ..support.scalebar import add_scalebar

    print('Plotting LFP ...')

    if not colors: colors = colorList

    # set font size
    plt.rcParams.update({'font.size': fontSize})

    # time range
    if timeRange is None:
        timeRange = [0, sim.cfg.duration]

    lfp = np.array(sim.allSimData['LFP'])[
        int(timeRange[0] / sim.cfg.recordStep):int(timeRange[1] /
                                                   sim.cfg.recordStep), :]

    if filtFreq:
        from scipy import signal
        fs = 1000.0 / sim.cfg.recordStep
        nyquist = fs / 2.0
        if isinstance(filtFreq, list):  # bandpass
            Wn = [filtFreq[0] / nyquist, filtFreq[1] / nyquist]
            b, a = signal.butter(filtOrder, Wn, btype='bandpass')
        elif isinstance(filtFreq, Number):  # lowpass
            Wn = filtFreq / nyquist
            b, a = signal.butter(filtOrder, Wn)
        for i in range(lfp.shape[1]):
            lfp[:, i] = signal.filtfilt(b, a, lfp[:, i])

    if detrend:
        from scipy import signal
        for i in range(lfp.shape[1]):
            lfp[:, i] = signal.detrend(lfp[:, i])

    if normSignal:
        for i in range(lfp.shape[1]):
            offset = min(lfp[:, i])
            if offset <= 0:
                lfp[:, i] += abs(offset)
            lfp[:, i] /= max(lfp[:, i])

    # electrode selection
    if 'all' in electrodes:
        electrodes.remove('all')
        electrodes.extend(list(range(int(sim.net.recXElectrode.nsites))))

    # plotting
    figs = []
    #maxPlots = 8.0

    data = {'lfp': lfp}  # returned data

    # time series -----------------------------------------
    if 'timeSeries' in plots:
        ydisp = np.absolute(lfp).max() * separation
        offset = 1.0 * ydisp
        t = np.arange(timeRange[0], timeRange[1], sim.cfg.recordStep)

        if figSize:
            figs.append(plt.figure(figsize=figSize))

        for i, elec in enumerate(electrodes):
            if elec == 'avg':
                lfpPlot = np.mean(lfp, axis=1)
                color = 'k'
                lw = 1.0
            elif isinstance(elec,
                            Number) and elec <= sim.net.recXElectrode.nsites:
                lfpPlot = lfp[:, elec]
                color = colors[i % len(colors)]
                lw = 1.0
            plt.plot(t, -lfpPlot + (i * ydisp), color=color, linewidth=lw)
            if len(electrodes) > 1:
                plt.text(timeRange[0] - 0.07 * (timeRange[1] - timeRange[0]),
                         (i * ydisp),
                         elec,
                         color=color,
                         ha='center',
                         va='top',
                         fontsize=fontSize,
                         fontweight='bold')

        ax = plt.gca()

        data['lfpPlot'] = lfpPlot
        data['ydisp'] = ydisp
        data['t'] = t

        # format plot
        if len(electrodes) > 1:
            plt.text(timeRange[0] - 0.14 * (timeRange[1] - timeRange[0]),
                     (len(electrodes) * ydisp) / 2.0,
                     'LFP electrode',
                     color='k',
                     ha='left',
                     va='bottom',
                     fontSize=fontSize,
                     rotation=90)
            plt.ylim(-offset, (len(electrodes)) * ydisp)
        else:
            plt.suptitle('LFP Signal', fontSize=fontSize, fontweight='bold')
        ax.invert_yaxis()
        plt.xlabel('time (ms)', fontsize=fontSize)
        ax.spines['top'].set_visible(False)
        ax.spines['right'].set_visible(False)
        ax.spines['left'].set_visible(False)
        plt.subplots_adjust(bottom=0.1, top=1.0, right=1.0)

        # calculate scalebar size and add scalebar
        round_to_n = lambda x, n, m: int(
            np.ceil(round(x, -int(np.floor(np.log10(abs(x)))) +
                          (n - 1)) / m)) * m
        scaley = 1000.0  # values in mV but want to convert to uV
        m = 10.0
        sizey = 100 / scaley
        while sizey > 0.25 * ydisp:
            try:
                sizey = round_to_n(0.2 * ydisp * scaley, 1, m) / scaley
            except:
                sizey /= 10.0
            m /= 10.0
        labely = '%.3g $\mu$V' % (sizey * scaley)  #)[1:]
        if len(electrodes) > 1:
            add_scalebar(ax,
                         hidey=True,
                         matchy=False,
                         hidex=False,
                         matchx=False,
                         sizex=0,
                         sizey=-sizey,
                         labely=labely,
                         unitsy='$\mu$V',
                         scaley=scaley,
                         loc=3,
                         pad=0.5,
                         borderpad=0.5,
                         sep=3,
                         prop=None,
                         barcolor="black",
                         barwidth=2)
        else:
            add_scalebar(ax,
                         hidey=True,
                         matchy=False,
                         hidex=True,
                         matchx=True,
                         sizex=None,
                         sizey=-sizey,
                         labely=labely,
                         unitsy='$\mu$V',
                         scaley=scaley,
                         unitsx='ms',
                         loc=3,
                         pad=0.5,
                         borderpad=0.5,
                         sep=3,
                         prop=None,
                         barcolor="black",
                         barwidth=2)
        # save figure
        if saveFig:
            if isinstance(saveFig, basestring):
                filename = saveFig
            else:
                filename = sim.cfg.filename + '_LFP_timeseries.png'
            plt.savefig(filename, dpi=dpi)

    # PSD ----------------------------------
    if 'PSD' in plots:
        if overlay:
            figs.append(plt.figure(figsize=figSize))
        else:
            numCols = 1  # np.round(len(electrodes) / maxPlots) + 1
            figs.append(plt.figure(figsize=(figSize[0] * numCols, figSize[1])))
            #import seaborn as sb

        allFreqs = []
        allSignal = []
        data['allFreqs'] = allFreqs
        data['allSignal'] = allSignal

        for i, elec in enumerate(electrodes):
            if elec == 'avg':
                lfpPlot = np.mean(lfp, axis=1)
            elif isinstance(elec,
                            Number) and elec <= sim.net.recXElectrode.nsites:
                lfpPlot = lfp[:, elec]

            # Morlet wavelet transform method
            if transformMethod == 'morlet':
                from ..support.morlet import MorletSpec, index2ms

                Fs = int(1000.0 / sim.cfg.recordStep)

                #t_spec = np.linspace(0, index2ms(len(lfpPlot), Fs), len(lfpPlot))
                morletSpec = MorletSpec(lfpPlot,
                                        Fs,
                                        freqmin=minFreq,
                                        freqmax=maxFreq,
                                        freqstep=stepFreq)
                freqs = F = morletSpec.f
                spec = morletSpec.TFR
                signal = np.mean(spec, 1)
                ylabel = 'Power'

            # FFT transform method
            elif transformMethod == 'fft':
                Fs = int(1000.0 / sim.cfg.recordStep)
                power = mlab.psd(lfpPlot,
                                 Fs=Fs,
                                 NFFT=NFFT,
                                 detrend=mlab.detrend_none,
                                 window=mlab.window_hanning,
                                 noverlap=noverlap,
                                 pad_to=None,
                                 sides='default',
                                 scale_by_freq=None)

                if smooth:
                    signal = _smooth1d(10 * np.log10(power[0]), smooth)
                else:
                    signal = 10 * np.log10(power[0])
                freqs = power[1]
                ylabel = 'Power (dB/Hz)'

            allFreqs.append(freqs)
            allSignal.append(signal)

        # ALTERNATIVE PSD CALCULATION USING WELCH
        # from http://joelyancey.com/lfp-python-practice/
        # from scipy import signal as spsig
        # Fs = int(1000.0/sim.cfg.recordStep)
        # maxFreq=100
        # f, psd = spsig.welch(lfpPlot, Fs, nperseg=100)
        # plt.semilogy(f,psd,'k')
        # sb.despine()
        # plt.xlim((0,maxFreq))
        # plt.yticks(size=fontsiz)
        # plt.xticks(size=fontsiz)
        # plt.ylabel('$uV^{2}/Hz$',size=fontsiz)

        if normPSD:
            vmax = np.max(allSignal)
            for i, s in enumerate(allSignal):
                allSignal[i] = allSignal[i] / vmax

        for i, elec in enumerate(electrodes):
            if not overlay:
                plt.subplot(np.ceil(len(electrodes) / numCols), numCols, i + 1)
            if elec == 'avg':
                color = 'k'
            elif isinstance(elec,
                            Number) and elec <= sim.net.recXElectrode.nsites:
                color = colors[i % len(colors)]
            freqs = allFreqs[i]
            signal = allSignal[i]
            plt.plot(freqs[freqs < maxFreq],
                     signal[freqs < maxFreq],
                     linewidth=lineWidth,
                     color=color,
                     label='Electrode %s' % (str(elec)))
            plt.xlim([0, maxFreq])
            if len(electrodes) > 1 and not overlay:
                plt.title('Electrode %s' % (str(elec)), fontsize=fontSize)
            plt.ylabel(ylabel, fontsize=fontSize)

        # format plot
        plt.xlabel('Frequency (Hz)', fontsize=fontSize)
        if overlay:
            plt.legend(fontsize=fontSize)
        plt.tight_layout()
        plt.suptitle('LFP Power Spectral Density',
                     fontsize=fontSize,
                     fontweight='bold')  # add yaxis in opposite side
        plt.subplots_adjust(bottom=0.08, top=0.92)

        if logx:
            pass
        #from IPython import embed; embed()

        # save figure
        if saveFig:
            if isinstance(saveFig, basestring):
                filename = saveFig
            else:
                filename = sim.cfg.filename + '_LFP_psd.png'
            plt.savefig(filename, dpi=dpi)

    # Spectrogram ------------------------------
    if 'spectrogram' in plots:
        import matplotlib.cm as cm
        numCols = 1  #np.round(len(electrodes) / maxPlots) + 1
        figs.append(plt.figure(figsize=(figSize[0] * numCols, figSize[1])))

        # Morlet wavelet transform method
        if transformMethod == 'morlet':
            from ..support.morlet import MorletSpec, index2ms

            spec = []

            for i, elec in enumerate(electrodes):
                if elec == 'avg':
                    lfpPlot = np.mean(lfp, axis=1)
                elif isinstance(
                        elec, Number) and elec <= sim.net.recXElectrode.nsites:
                    lfpPlot = lfp[:, elec]
                fs = int(1000.0 / sim.cfg.recordStep)
                t_spec = np.linspace(0, index2ms(len(lfpPlot), fs),
                                     len(lfpPlot))
                spec.append(
                    MorletSpec(lfpPlot,
                               fs,
                               freqmin=minFreq,
                               freqmax=maxFreq,
                               freqstep=stepFreq))

            f = np.array(range(minFreq, maxFreq + 1,
                               stepFreq))  # only used as output for user

            vmin = np.array([s.TFR for s in spec]).min()
            vmax = np.array([s.TFR for s in spec]).max()

            for i, elec in enumerate(electrodes):
                plt.subplot(np.ceil(len(electrodes) / numCols), numCols, i + 1)
                T = timeRange
                F = spec[i].f
                if normSpec:
                    spec[i].TFR = spec[i].TFR / vmax
                    S = spec[i].TFR
                    vc = [0, 1]
                else:
                    S = spec[i].TFR
                    vc = [vmin, vmax]

                plt.imshow(S,
                           extent=(np.amin(T), np.amax(T), np.amin(F),
                                   np.amax(F)),
                           origin='lower',
                           interpolation='None',
                           aspect='auto',
                           vmin=vc[0],
                           vmax=vc[1],
                           cmap=plt.get_cmap('viridis'))
                plt.colorbar(label='Power')
                plt.ylabel('Hz')
                plt.tight_layout()
                if len(electrodes) > 1:
                    plt.title('Electrode %s' % (str(elec)),
                              fontsize=fontSize - 2)

        # FFT transform method
        elif transformMethod == 'fft':

            from scipy import signal as spsig
            spec = []

            for i, elec in enumerate(electrodes):
                if elec == 'avg':
                    lfpPlot = np.mean(lfp, axis=1)
                elif isinstance(
                        elec, Number) and elec <= sim.net.recXElectrode.nsites:
                    lfpPlot = lfp[:, elec]
                # creates spectrogram over a range of data
                # from: http://joelyancey.com/lfp-python-practice/
                fs = int(1000.0 / sim.cfg.recordStep)
                f, t_spec, x_spec = spsig.spectrogram(
                    lfpPlot,
                    fs=fs,
                    window='hanning',
                    detrend=mlab.detrend_none,
                    nperseg=nperseg,
                    noverlap=noverlap,
                    nfft=NFFT,
                    mode='psd')
                x_mesh, y_mesh = np.meshgrid(t_spec * 1000.0, f[f < maxFreq])
                spec.append(10 * np.log10(x_spec[f < maxFreq]))

            vmin = np.array(spec).min()
            vmax = np.array(spec).max()

            for i, elec in enumerate(electrodes):
                plt.subplot(np.ceil(len(electrodes) / numCols), numCols, i + 1)
                plt.pcolormesh(x_mesh,
                               y_mesh,
                               spec[i],
                               cmap=cm.viridis,
                               vmin=vmin,
                               vmax=vmax)
                plt.colorbar(label='dB/Hz',
                             ticks=[np.ceil(vmin),
                                    np.floor(vmax)])
                if logy:
                    plt.yscale('log')
                    plt.ylabel('Log-frequency (Hz)')
                    if isinstance(logy, list):
                        yticks = tuple(logy)
                        plt.yticks(yticks, yticks)
                else:
                    plt.ylabel('(Hz)')
                if len(electrodes) > 1:
                    plt.title('Electrode %s' % (str(elec)),
                              fontsize=fontSize - 2)

        plt.xlabel('time (ms)', fontsize=fontSize)
        plt.tight_layout()
        plt.suptitle('LFP spectrogram', size=fontSize, fontweight='bold')
        plt.subplots_adjust(bottom=0.08, top=0.90)

        # save figure
        if saveFig:
            if isinstance(saveFig, basestring):
                filename = saveFig
            else:
                filename = sim.cfg.filename + '_LFP_timefreq.png'
            plt.savefig(filename, dpi=dpi)

    # locations ------------------------------
    if 'locations' in plots:
        cvals = []  # used to store total transfer resistance

        for cell in sim.net.compartCells:
            trSegs = list(
                np.sum(sim.net.recXElectrode.getTransferResistance(cell.gid) *
                       1e3,
                       axis=0))  # convert from Mohm to kilohm
            if not includeAxon:
                i = 0
                for secName, sec in cell.secs.items():
                    nseg = sec['hObj'].nseg  #.geom.nseg
                    if 'axon' in secName:
                        for j in range(i, i + nseg):
                            del trSegs[j]
                    i += nseg
            cvals.extend(trSegs)

        includePost = [c.gid for c in sim.net.compartCells]
        fig = sim.analysis.plotShape(includePost=includePost,
                                     showElectrodes=electrodes,
                                     cvals=cvals,
                                     includeAxon=includeAxon,
                                     dpi=dpi,
                                     fontSize=fontSize,
                                     saveFig=saveFig,
                                     showFig=showFig,
                                     figSize=figSize)[0]
        figs.append(fig)

    outputData = {
        'LFP': lfp,
        'electrodes': electrodes,
        'timeRange': timeRange,
        'saveData': saveData,
        'saveFig': saveFig,
        'showFig': showFig
    }

    if 'timeSeries' in plots:
        outputData.update({'t': t})

    if 'PSD' in plots:
        outputData.update({'allFreqs': allFreqs, 'allSignal': allSignal})

    if 'spectrogram' in plots:
        outputData.update({
            'spec': spec,
            't': t_spec * 1000.0,
            'freqs': f[f <= maxFreq]
        })

    #save figure data
    if saveData:
        figData = outputData
        _saveFigData(figData, saveData, 'lfp')

    # show fig
    if showFig: _showFigure()

    return figs, outputData
Ejemplo n.º 50
0
    def plot(self, ax=None, show=False, margin=5,
             linewidth=None, add_labels=False,
             line2dproperties={}, xshift=0, yshift=0,
             show_distances=[], print_distances=False,
             virtual_atoms=True):
        """
        Plots the 2D projection.

        This uses modified copy-paste code by Syrtis Major (c)2014-2015
        under the BSD 3-Clause license and code from matplotlib under the PSF license.

        :param ax:          The axes to draw to.
                            You can get it by calling `fig, ax=matplotlib.pyplot.subplots()`

        :param show:        If true, the matplotlib.pyplot.show() will be called at the
                            end of this function.

        :param margin:      A numeric value.
                            The margin around the plotted projection inside the (sub-)plot.

        :param linewidth:   The width of the lines projection.

        :param add_labels:  Display the name of the corresponding coarse grain element in
                            the middle of each segment in the projection.
                            Either a bool or a set of labels to display.

        :param line2dproperties:
                            A dictionary. Will be passed as `**kwargs` to the constructor of
                            `matplotlib.lines.Line2D`.
                            See http://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D

        :param xshift, yshift:
                            Shift the projection by the given amount inside the canvas.

        :param show_distances:
                            A list of tuples of strings, e.g. `[("h1","h8"),("h2","m15")]`.
                            Show the distances between these elements in the plot

        :param print_distances:
                            Bool. Print all distances from show_distances at the side of the plot
                            instead of directly next to the distance
        """
        # In case of ssh without -X option, a TypeError might be raised
        # during the import of pyplot
        # This probably depends on the version of some library.
        # This is also the reason why we import matplotlib only inside the plot function.
        text = []
        try:
            if ax is None or show:
                import matplotlib.pyplot as plt
            import matplotlib.lines as lines
            import matplotlib.transforms as mtransforms
            import matplotlib.text as mtext
            import matplotlib.font_manager as font_manager
        except TypeError as e:
            warnings.warn("Cannot plot projection. Maybe you could not load Gtk "
                          "(no X11 server available)? During the import of matplotlib"
                          "the following Error occured:\n {}: {}".format(type(e).__name__, e))
            return
        except ImportError as e:
            warnings.warn("Cannot import matplotlib. Do you have matplotlib installed? "
                          "The following error occured:\n {}: {}".format(type(e).__name__, e))
            return
        # try:
        #    import shapely.geometry as sg
        #    import shapely.ops as so
        # except ImportError as e:
        #    warnings.warn("Cannot import shapely. "
        #                  "The following error occured:\n {}: {}".format(type(e).__name__, e))
        #    area=False
        #    #return
        # else:
        #    area=True
        area = False
        polygons = []

        def circles(x, y, s, c='b', ax=None, vmin=None, vmax=None, **kwargs):
            """
            Make a scatter of circles plot of x vs y, where x and y are sequence
            like objects of the same lengths. The size of circles are in data scale.

            Parameters
            ----------
            x,y : scalar or array_like, shape (n, )
                Input data
            s : scalar or array_like, shape (n, )
                Radius of circle in data scale (ie. in data unit)
            c : color or sequence of color, optional, default : 'b'
                `c` can be a single color format string, or a sequence of color
                specifications of length `N`, or a sequence of `N` numbers to be
                mapped to colors using the `cmap` and `norm` specified via kwargs.
                Note that `c` should not be a single numeric RGB or
                RGBA sequence because that is indistinguishable from an array of
                values to be colormapped.  `c` can be a 2-D array in which the
                rows are RGB or RGBA, however.
            ax : Axes object, optional, default: None
                Parent axes of the plot. It uses gca() if not specified.
            vmin, vmax : scalar, optional, default: None
                `vmin` and `vmax` are used in conjunction with `norm` to normalize
                luminance data.  If either are `None`, the min and max of the
                color array is used.  (Note if you pass a `norm` instance, your
                settings for `vmin` and `vmax` will be ignored.)

            Returns
            -------
            paths : `~matplotlib.collections.PathCollection`

            Other parameters
            ----------------
            kwargs : `~matplotlib.collections.Collection` properties
                eg. alpha, edgecolors, facecolors, linewidths, linestyles, norm, cmap

            Examples
            --------
            a = np.arange(11)
            circles(a, a, a*0.2, c=a, alpha=0.5, edgecolor='none')

            License
            --------
            This function is copied (and potentially modified) from
            http://stackoverflow.com/a/24567352/5069869

            Copyright Syrtis Major, 2014-2015

            This function is under [The BSD 3-Clause License]
            (http://opensource.org/licenses/BSD-3-Clause)
            """
            from matplotlib.patches import Circle
            from matplotlib.collections import PatchCollection
            #import matplotlib.colors as colors
            if ax is None:
                raise TypeError()

            if fus.is_string_type(c):
                color = c     # ie. use colors.colorConverter.to_rgba_array(c)
            else:
                color = None  # use cmap, norm after collection is created
            kwargs.update(color=color)

            if np.isscalar(x):
                patches = [Circle((x, y), s), ]
            elif np.isscalar(s):
                patches = [Circle((x_, y_), s) for x_, y_ in zip(x, y)]
            else:
                patches = [Circle((x_, y_), s_) for x_, y_, s_ in zip(x, y, s)]
            collection = PatchCollection(patches, **kwargs)

            if color is None:
                collection.set_array(np.asarray(c))
                if vmin is not None or vmax is not None:
                    collection.set_clim(vmin, vmax)

            ax.add_collection(collection)
            ax.autoscale_view()
            return collection

        class MyLine(lines.Line2D):
            """
            Copied and modified from http://matplotlib.org/examples/api/line_with_text.html,
            which is part of matplotlib 1.5.0 (Copyright (c) 2012-2013 Matplotlib Development
            Team; All Rights Reserved).
            Used under the matplotlib license: http://matplotlib.org/users/license.html
            """

            def __init__(self, *args, **kwargs):
                # we'll update the position when the line data is set
                fm = font_manager.FontProperties(size="large", weight="demi")
                self.text = mtext.Text(0, 0, '', fontproperties=fm)
                lines.Line2D.__init__(self, *args, **kwargs)

                # we can't access the label attr until *after* the line is
                # inited
                self.text.set_text(self.get_label())

            def set_figure(self, figure):
                self.text.set_figure(figure)
                lines.Line2D.set_figure(self, figure)

            def set_axes(self, axes):
                self.text.set_axes(axes)
                lines.Line2D.set_axes(self, axes)

            def set_transform(self, transform):
                # 2 pixel offset
                texttrans = transform + mtransforms.Affine2D().translate(2, 2)
                self.text.set_transform(texttrans)
                lines.Line2D.set_transform(self, transform)

            def set_data(self, x, y):
                if len(x):
                    self.text.set_position(
                        ((x[0] + x[-1]) / 2, (y[0] + y[-1]) / 2))
                lines.Line2D.set_data(self, x, y)

            def draw(self, renderer):
                # draw my label at the end of the line with 2 pixel offset
                lines.Line2D.draw(self, renderer)
                self.text.draw(renderer)

        if "linewidth" in line2dproperties and linewidth is not None:
            warnings.warn(
                "Got multiple values for 'linewidth' (also present in line2dproperties)")
        if linewidth is not None:
            line2dproperties["linewidth"] = linewidth
        if "solid_capstyle" not in line2dproperties:
            line2dproperties["solid_capstyle"] = "round"

        if ax is None:
            try:
                fig, ax = plt.subplots(1, 1)
            except Exception as e:
                warnings.warn("Cannot create Axes  or Figure. You probably have no graphical "
                              "display available. The Error was:\n {}: {}".format(type(e).__name__, e))
                return
        lprop = copy.copy(line2dproperties)
        if virtual_atoms and len(self._virtual_atoms) > 0:
            circles(
                self._virtual_atoms[:, 0], self._virtual_atoms[:, 1], c="gray", s=0.7, ax=ax)
        for label, (s, e) in self._coords.items():
            if "color" not in line2dproperties:
                if label.startswith("s"):
                    lprop["color"] = "green"
                elif label.startswith("i"):
                    lprop["color"] = "gold"
                elif label.startswith("h"):
                    lprop["color"] = "blue"
                elif label.startswith("m"):
                    lprop["color"] = "red"
                elif label.startswith("f") or label.startswith("t"):
                    lprop["color"] = "blue"
                else:
                    lprop["color"] = "black"
            if add_labels != False and (add_labels == True or label in add_labels):
                lprop["label"] = label
            else:
                lprop["label"] = ""
            #line=lines.Line2D([s[0], e[0]],[s[1],e[1]], **lprop)
            line = MyLine([s[0] + xshift, e[0] + xshift],
                          [s[1] + yshift, e[1] + yshift], **lprop)
            ax.add_line(line)
            s = s + np.array([xshift, yshift])
            e = e + np.array([xshift, yshift])
            vec = np.array(e) - np.array(s)
            nvec = np.array([vec[1], -vec[0]])
            try:
                div = math.sqrt(nvec[0]**2 + nvec[1]**2)
            except ZeroDivisionError:
                div = 100000
            a = e + nvec * 5 / div
            b = e - nvec * 5 / div
            c = s + nvec * 5 / div
            d = s - nvec * 5 / div
            # For now disabling area representation
            area = False
            if area:
                polygon = sg.Polygon([a, b, d, c])
                polygons.append(polygon)
        for s, e in show_distances:
            st = (self._coords[s][0] + self._coords[s][1]) / 2
            en = (self._coords[e][0] + self._coords[e][1]) / 2
            d = ftuv.vec_distance(st, en)
            if print_distances:
                line = MyLine([st[0] + xshift, en[0] + xshift], [st[1] + yshift, en[1] + yshift],
                              color="orange", linestyle="--")
                text.append("{:3} - {:3}: {:5.2f}".format(s, e, d))
            else:
                line = MyLine([st[0] + xshift, en[0] + xshift], [st[1] + yshift, en[1] + yshift],
                              label=str(round(d, 1)), color="orange", linestyle="--")
            ax.add_line(line)

        ax.axis(self.get_bounding_square(margin))
        fm = font_manager.FontProperties(["monospace"], size="x-small")
        if print_distances:
            ax.text(0.01, 0.05, "\n".join(["Distances:"] + text),
                    transform=ax.transAxes, fontproperties=fm)
        if area:
            rnaArea = so.cascaded_union(polygons)
            rnaXs, rnaYs = rnaArea.exterior.xy
            ax.fill(rnaXs, rnaYs, alpha=0.5)
        out = ax.plot()
        if show:
            plt.show()
            return
        return out
Ejemplo n.º 51
0
 def _sample_change_from_delta(self, delta):
     sample_length = self._simpler.sample.length
     change_in_samples = round(old_div(delta * sample_length, 10))
     return int(change_in_samples)
        gradient_magnitude = math.sqrt(gradient_sum_squares)
        counter = counter + 1
        if gradient_magnitude < tolerance or counter > 10000:
            converged = True
    return(weights)

step_size = 7e-12
tolerance = 2.5e7      
simple_features = ['sqft_living']
my_output = 'price'
initial_weights = np.array([-47000., 1.])
(simple_feature_matrix, output) = get_numpy_data(train_data, simple_features, my_output)
   
simple_weights = regression_gradient_descent(simple_feature_matrix, output,initial_weights, step_size, tolerance)
print('question 1')
print(round(simple_weights[1],1))

print('question 2 - simple model predicting house 1 price')
(test_simple_feature_matrix, test_output) = get_numpy_data(test_data, simple_features, my_output)
simpleTestOutcomes = predict_outcome(test_simple_feature_matrix, simple_weights)
print(round(simpleTestOutcomes[0]))

print('question 3 - complex model predicting house 1 price' )


model_features = ['sqft_living', 'sqft_living15']
(feature_matrix, output) = get_numpy_data(train_data, model_features,my_output)
initial_weights = np.array([-100000., 1., 1.])
step_size = 4e-12
tolerance = 1e9
model_weights = regression_gradient_descent(feature_matrix, output,initial_weights, step_size, tolerance)
def calculate_metrics(predictions,y,data_type):
    start_time4 = time.time()

    # Calculate ROC
    evaluator = BinaryClassificationEvaluator(labelCol=y,rawPredictionCol='probability')
    auroc = evaluator.evaluate(predictions,{evaluator.metricName: "areaUnderROC"})
    print('AUC calculated',auroc)

    selectedCols = predictions.select(F.col("probability"), F.col('prediction'), F.col(y)).rdd.map(lambda row: (float(row['probability'][1]), float(row['prediction']), float(row[y]))).collect()
    y_score, y_pred, y_true = zip(*selectedCols)

    # Calculate Accuracy
    accuracydf=predictions.withColumn('acc',F.when(predictions.prediction==predictions[y],1).otherwise(0))
    accuracydf.createOrReplaceTempView("accuracyTable")
    RFaccuracy=spark.sql("select sum(acc)/count(1) as accuracy from accuracyTable").collect()[0][0]
    print('Accuracy calculated',RFaccuracy)

#     # Build KS Table
    split1_udf = udf(lambda value: value[1].item(), DoubleType())

    if data_type in ['train','valid','test','oot1','oot2']:
        decileDF = predictions.select(y, split1_udf('probability').alias('probability'))
    else:
        decileDF = predictions.select(y, 'probability')

    decileDF=decileDF.withColumn('non_target',1-decileDF[y])

    window = Window.orderBy(desc("probability"))
    decileDF = decileDF.withColumn("rownum", F.row_number().over(window))
    decileDF.cache()
    decileDF=decileDF.withColumn("rownum",decileDF["rownum"].cast("double"))

    window2 = Window.orderBy("rownum")
    RFbucketedData=decileDF.withColumn("deciles", F.ntile(10).over(window2))
    RFbucketedData = RFbucketedData.withColumn('deciles',RFbucketedData['deciles'].cast("int"))
    RFbucketedData.cache()
    #a = RFbucketedData.count()
    #print(RFbucketedData.show())

    ## to pandas from here
    print('KS calculation starting')
    target_cnt=RFbucketedData.groupBy('deciles').agg(F.sum(y).alias('target')).toPandas()
    non_target_cnt=RFbucketedData.groupBy('deciles').agg(F.sum("non_target").alias('non_target')).toPandas()
    overall_cnt=RFbucketedData.groupBy('deciles').count().alias('Total').toPandas()
    overall_cnt = overall_cnt.merge(target_cnt,on='deciles',how='inner').merge(non_target_cnt,on='deciles',how='inner')
    overall_cnt=overall_cnt.sort_values(by='deciles',ascending=True)
    overall_cnt['Pct_target']=(overall_cnt['target']/overall_cnt['count'])*100
    overall_cnt['cum_target'] = overall_cnt.target.cumsum()
    overall_cnt['cum_non_target'] = overall_cnt.non_target.cumsum()
    overall_cnt['%Dist_Target'] = (overall_cnt['cum_target'] / overall_cnt.target.sum())*100
    overall_cnt['%Dist_non_Target'] = (overall_cnt['cum_non_target'] / overall_cnt.non_target.sum())*100
    overall_cnt['spread'] = builtins.abs(overall_cnt['%Dist_Target']-overall_cnt['%Dist_non_Target'])
    decile_table=overall_cnt.round(2)
    print("KS_Value =", builtins.round(overall_cnt.spread.max(),2))
    #print "Test Error =", builtin.round((1.0 - RFaccuracy),3)
    #print "Accuracy =", builtin.round(RFaccuracy,3)
    #print "AUC=", builtin.round(auroc,3)
    decileDF.unpersist()
    RFbucketedData.unpersist()
    print("Metrics calculation process Completed in : "+ " %s seconds" % (time.time() - start_time4))
    return auroc,RFaccuracy,builtins.round(overall_cnt.spread.max(),2), y_score, y_pred, y_true, overall_cnt
Ejemplo n.º 54
0
def round(number, *args):
    """Replacement for the built-in
    :func:`round() <python:round>` function."""
    return builtins.round(number, *args)
Ejemplo n.º 55
0
 def rounded_compare(self, val1, val2):
     print('Comparing {} and {} using round()'.format(val1, val2))
     return builtins.round(val1) == builtins.round(val2)
Ejemplo n.º 56
0
def PlotAll(SaveNames,params):
    from numpy import  min, max, percentile,asarray,ceil,sqrt
    import numpy as np
    import sys
    from scipy.signal import welch
    from pylab import load
    import matplotlib.pyplot as plt
    import matplotlib.animation as animation
    from matplotlib.backends.backend_pdf import PdfPages
#    from scipy.ndimage.measurements import label    
    from AuxilaryFunctions import GetRandColors, max_intensity,SuperVoxelize,GetData,PruneComponents,SplitComponents,ThresholdShapes,MergeComponents,ThresholdData,make_sure_path_exists
#    from BlockLocalNMF_AuxilaryFunctions import HALS4activity
    from mpl_toolkits.axes_grid1 import make_axes_locatable    
    
    # makse sure relevant folders exist, and add to path    
    Results_folder='Results/'
    make_sure_path_exists(Results_folder)
        
    OASIS_path='OASIS/'   
    make_sure_path_exists(OASIS_path)
    sys.path.append(OASIS_path)
    from functions import deconvolve

    ## plotting params 
    # what to plot 
    plot_activities=True
    plot_activities_PSD=False
    plot_shapes_projections=True
    plot_shapes_slices=False
    plot_activityCorrs=False
    plot_clustered_shape=False
    plot_residual_slices=False
    plot_residual_projections=False
    # videos to generate
    video_shapes=False
    video_residual=True
    video_slices=False
    # what to save
    save_video=True
    save_plot=True
    close_figs=True#close all figs right after saving (to avoid memory overload)
    # PostProcessing   
    Split=False   
    Threshold=False   #threshold shapes in the end and keep only connected components
    Prune=False # Remove "Bad" components (where bad is defined within SplitComponent fucntion)
    Merge=True # Merge highly correlated nearby components
    FineTune=False # SHould we fine tune activity after post-processing? (mainly after merging)
    IncludeBackground=False #should we include the background as an extracted component?
    
    # how to plot
    detrend=True #should we detrend the data (remove background component)?
    scale=2 #scale colormap to enhance colors
    satuartion_percentile=96 #saturate colormap ont this percentile, when ma=percentile is used
    dpi=200 #for videos
    restrict_support=True #in shape video, zero out data outside support of shapes
    C=4 #number of components to show in shape videos (if larger then number of shapes L, then we automatically set C=L)
    color_map='gray' #'gnuplot'
    frame_rate=10.0 #Hz
    
    # Fetch experimental 3D data 
    data=GetData(params.data_name)
    if params.SuperVoxelize==True:
        data=SuperVoxelize(data)
    
    if params.ThresholdData==True:
        data=ThresholdData(data)        
        
    dims=np.shape(data)
    
    if len(dims)<4:
        plot_Shapes2D=False
        video_residual_2D=False
        if plot_shapes_projections or plot_shapes_slices:
            plot_Shapes2D=True
        
        if video_residual==True:
            video_residual_2D=True
    
        plot_shapes_projections=False
        plot_shapes_slices=False
        plot_activityCorrs=False
        plot_clustered_shape=False
        plot_residual_slices=False
        plot_residual_projections=False
        video_shapes=False
        video_residual=False
        video_slices=False
        print('2D data, ignoring 3D plots/video options')
    else:
        plot_Shapes2D=False
        video_residual_2D=False

    
    min_dim=np.argmin(dims[1:])
    denoised_data=0    
    detrended_data=data
    
    for rep in range(len(SaveNames)): 
        resultsName=SaveNames[rep]
        try:
            results=load('NMF_Results/'+SaveNames[rep])
        except IOError:
            if rep==0:
                print('results file not found!!')              
            else:
                break            
        SS=results['shapes']
        AA=results['activity']

        if rep>=params.Background_num:
            adaptBias=False
        else:
            adaptBias=True
            
        if IncludeBackground==True:
            adaptBias=False        
               
        L=len(AA)-adaptBias
        if L==0: #Stop if we encounter a file with zero components
            break
        S=SS[:-adaptBias]
        b=SS[L:(L+adaptBias)]
        A=AA[:-adaptBias]
        f=AA[L:(L+adaptBias)]
        if rep==0:
            shapes=S
            activity=A
            background_shapes=b
            background_activity=f
        else:
            shapes=np.append(shapes,S,axis=0)
            activity=np.append(activity,A,axis=0) 
            background_shapes=np.append(background_shapes,b,axis=0)
            background_activity=np.append(background_activity,f,axis=0) 
        
    L=len(shapes)
    adaptBias=0
    
    if Split==True:
        shapes,activity,L,all_local_max=SplitComponents(shapes,activity,adaptBias)   
    
    if Merge==True:
        shapes,activity,L=MergeComponents(shapes,activity,L,threshold=0.7,sig=10)
        
    if Prune==True:
#           deleted_indices=[5,9,11,14,15,17,24]+range(25,36)
        shapes,activity,L=PruneComponents(shapes,activity,L,params.TargetAreaRatio)
    
    activity_NonNegative=np.copy(activity)
    activity_NonNegative[activity_NonNegative<0]=0
    activity_noisy=np.copy(activity_NonNegative)
    if FineTune==True:
        for ll in range(L):
            activity[ll], spikes, baseline, g, lam = deconvolve(activity_NonNegative[ll],optimize_g=10,penalty=0)
#            activity,background_activity,S,bl,c1,sn,g,junk = update_temporal_components(data.reshape((len(data),-1)).transpose(), shapes.reshape((len(shapes),-1)).transpose(), background_shapes.reshape((len(background_shapes),-1)).transpose(), activity,background_activity,**options['temporal_params'])
        activity_noisy=np.copy(activity_NonNegative)
        activity_NonNegative=activity
    
    print(str(L)+' shapes detected')
    
    detrended_data= detrended_data - background_activity.T.dot(background_shapes.reshape((len(background_shapes), -1))).reshape(dims)        

    if Threshold==True:            
        shapes=ThresholdShapes(shapes,adaptBias,[],MaxRatio=[])
                
    if plot_residual_projections or video_shapes or video_residual or video_slices or video_residual_2D:
        colors=GetRandColors(L)
        color_shapes=np.transpose(shapes.reshape(L, -1,1)*colors,[1,0,2]) #weird transpose for tensor dot product next line
        denoised_data = denoised_data + (activity_NonNegative.T.dot(color_shapes)).reshape(tuple(dims)+(3,))   
        residual = detrended_data - activity_NonNegative.T.dot(shapes.reshape(L, -1)).reshape(dims)
    
    if detrend==True:
        data=detrended_data
 
#%% After loading loop - Normalize (colored) denoised data
    if plot_residual_projections or video_shapes or video_residual or video_slices or video_residual_2D:
#       denoised_data=denoised_data/np.max(denoised_data)
       denoised_data=old_div(denoised_data,np.percentile(denoised_data[denoised_data>0],99.5))  #%% normalize denoised data range
       denoised_data[denoised_data>1]=1           
    
    #    plt.close('all')
        
    #%% plotting params
    ComponentsInFig=20

    left  = 0.05 # the left side of the subplots of the figure
    right = 0.95   # the right side of the subplots of the figure
    bottom = 0.05   # the bottom of the subplots of the figure
    top = 0.95      # the top of the subplots of the figure
    wspace = 0.1   # the amount of width reserved for blank space between subplots
    hspace = 0.12  # the amount of height reserved for white space between subplots        
    
              
    #%% ###### Plot Individual neurons' activities
    index=0 #component display index
    sz=np.min([ComponentsInFig,L+adaptBias])
    
#    a=ceil(sqrt(sz))  
#    b=ceil(sz/a)  
    
    a=sz
    b=1
    
    if plot_activities:
        pp = PdfPages(Results_folder + 'Activities'+resultsName+'.pdf')        
        for ii in range(L+adaptBias):
            if index==0:
#                fig0=plt.figure(figsize=(dims[1] , dims[2]))
                 fig0=plt.figure(figsize=(11,18))
            ax = plt.subplot(a,b,index+1)
#            dt=1/30 # 30 Hz sample rate
            time=list(range(len(activity[ii])))
            plt.plot(time,activity_noisy[ii],linewidth=0.5,c='r')
            plt.plot(time,activity[ii],linewidth=3,c='b')
            ma=np.max([np.max(activity[ii]),np.max(activity_noisy[ii])])            
            plt.setp(ax, xticks=[],yticks=[0,ma])
            # component number
            ax.text(0.02, 0.8, str(ii),
                verticalalignment='bottom', horizontalalignment='left',
                transform=ax.transAxes,
                color='black',weight='bold', fontsize=13)
            index+=1   
            if ((ii%ComponentsInFig)==(ComponentsInFig-1)) or ii==(L+adaptBias-1):                 
                index=0
                if save_plot==True:
                    plt.subplots_adjust(left*2, bottom, right, top, wspace, hspace*2)
                    pp.savefig(fig0)    
        pp.close()
        if close_figs:
            plt.close('all')
            
    #%% Plot activities` PSDs
    index=0 #component display index
    sz=np.min([ComponentsInFig,L+adaptBias])
    a=ceil(sqrt(sz))  
    b=ceil(old_div(sz,a))  
    
    if plot_activities_PSD:
        pp = PdfPages(Results_folder + 'ActivityPSDs'+resultsName+'.pdf')        
        for ii in range(L+adaptBias):
            if index==0:
#                fig0=plt.figure(figsize=(dims[1] , dims[2]))
                 fig0=plt.figure(figsize=(11,18))
            ax = plt.subplot(a,b,index+1)
            ff, psd_activity = welch(activity[ii], nperseg=round(old_div(len(activity[ii]), 64)))
            plt.plot(ff,psd_activity,linewidth=3)
            plt.setp(ax, xticks=[],yticks=[0])
            # component number
            ax.text(0.02, 0.8, str(ii),
                verticalalignment='bottom', horizontalalignment='left',
                transform=ax.transAxes,
                color='black',weight='bold', fontsize=13)
            index+=1   
            if ((ii%ComponentsInFig)==(ComponentsInFig-1)) or ii==(L+adaptBias-1):                 
                index=0
                if save_plot==True:
                    plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
                    pp.savefig(fig0)    
        pp.close()
        if close_figs:
            plt.close('all')
            

            

    #%%  2D shapes
    index=0 #component display index
    sz=np.min([ComponentsInFig,L+adaptBias])
    a=ceil(0.5*sqrt(sz))  
    b=ceil(old_div(sz,a))  
    
    if plot_Shapes2D:            
        if save_plot==True:
            pp = PdfPages(Results_folder + 'Shapes2D_'+resultsName+'.pdf')
        for ll in range(L+adaptBias):
            if index==0:
                fig=plt.figure(figsize=(18 , 11))
            ax = plt.subplot(a,b,index+1)  
            temp=shapes[ll]
            mi=0
            try:
                ma=np.percentile(temp[temp>0],satuartion_percentile)
            except IndexError:
                ma=0
            im=plt.imshow(temp,vmin=mi,vmax=ma,cmap=color_map)
            plt.setp(ax,xticks=[],yticks=[])
            mn=int(np.floor(mi))        # colorbar min value
            mx=int(np.ceil(ma))         # colorbar max value
            md=old_div((mx-mn),2)
#                divider = make_axes_locatable(ax)
#                cax = divider.append_axes("right", size="5%", pad=0.05)
#                cb=plt.colorbar(im,cax=cax)
#                    cb.set_ticks([mn,md,mx])
#                    cb.set_ticklabels([mn,md,mx])
            
            # component number
            ax.text(0.02, 0.8, str(ll),
            verticalalignment='bottom', horizontalalignment='left',
            transform=ax.transAxes,
            color='white',weight='bold', fontsize=13)
            #sparsity
            spar_str=str(np.round(np.mean(shapes[ll]>0)*100,2))+'%'
            ax.text(0.02, 0.02, spar_str,
            verticalalignment='bottom', horizontalalignment='left',
            transform=ax.transAxes,
            color='white',weight='bold', fontsize=13)
            #L^p
            for p in range(2,6,2):
                Lp=old_div((np.sum(shapes[ll]**p))**(old_div(1,float(p))),np.sum(shapes[ll]))
                Lp_str=str(np.round(Lp*100,2))+'%' #'L'+str(p)+'='+
                ax.text(0.02+p*0.2, 0.02, Lp_str,
                verticalalignment='bottom', horizontalalignment='left',
                transform=ax.transAxes,
                color='yellow',weight='bold', fontsize=13)         
            index+=1
            if (ll%ComponentsInFig==(ComponentsInFig-1)) or ll==L+adaptBias-1: 
                plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
                index=0
                if save_plot==True:
                    pp.savefig(fig)            
        pp.close()
        if close_figs:
            plt.close('all')
            
    #%% Re-write plot code from here, so that each figure has only ComponentsInFig components         
    #%% ###### Plot Individual neurons' area which is correlated with their activities
    a=ceil(sqrt(L+adaptBias))
    b=ceil(old_div((L+adaptBias),a))
    
    if plot_activityCorrs:
        if save_plot==True:
            pp = PdfPages(Results_folder + 'CorrelationWithActivity'+resultsName+'.pdf')
        for dd in range(len(shapes[0].shape)):
            fig0=plt.figure(figsize=(11,18))
    
            for ii in range(L+adaptBias):
                ax = plt.subplot(a,b,ii+1)
                corr_imag=old_div(np.dot(activity[ii],np.transpose(data,[1,2,0,3])),np.sqrt(np.sum(data**2,axis=0)*np.sum(activity[ii]**2)))
                plt.imshow(np.abs(corr_imag).max(dd),cmap=color_map)
                plt.setp(ax,xticks=[],yticks=[])
            plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        
            if save_plot==True:
                pp.savefig(fig0)
        pp.close()
        if close_figs:
            plt.close('all')

    #%%  All Shapes projections
    a=ceil(sqrt(L+adaptBias))
    b=ceil(old_div((L+adaptBias),a))

    if plot_shapes_projections:
        if save_plot==True:
            pp = PdfPages(Results_folder + 'Shapes_projections'+resultsName+'.pdf')

        for dd in range(len(shapes[0].shape)):
            fig=plt.figure(figsize=(18 , 11))
            for ll in range(L+adaptBias):
                ax = plt.subplot(a,b,ll+1)  
                temp=shapes[ll].max(dd)
                if dd==2:
                    temp=temp.T
                mi=np.min(shapes[ll])
                ma=np.max(shapes[ll])
                im=plt.imshow(temp,vmin=mi,vmax=ma,cmap=color_map)
                plt.setp(ax,xticks=[],yticks=[])
                mn=int(np.floor(mi))        # colorbar min value
                mx=int(np.ceil(ma))         # colorbar max value
                md=old_div((mx-mn),2)
                divider = make_axes_locatable(ax)
                cax = divider.append_axes("right", size="5%", pad=0.05)
                cb=plt.colorbar(im,cax=cax)
#                    cb.set_ticks([mn,md,mx])
#                    cb.set_ticklabels([mn,md,mx])
                
                # component number
                ax.text(0.02, 0.8, str(ll),
                verticalalignment='bottom', horizontalalignment='left',
                transform=ax.transAxes,
                color='white',weight='bold', fontsize=13)
#                    #sparsity
                spar_str=str(np.round(np.mean(shapes[ll]>0)*100,2))+'%'
                ax.text(0.02, 0.02, spar_str,
                verticalalignment='bottom', horizontalalignment='left',
                transform=ax.transAxes,
                color='white',weight='bold', fontsize=13)
#                    #L^p
#                    for p in range(2,2,2):
#                        Lp=(np.sum(shapes[ll]**p))**(1/float(p))/np.sum(shapes[ll])
#                        Lp_str=str(np.round(Lp*100,2))+'%' #'L'+str(p)+'='+
#                        ax.text(0.02+p*0.2, 0.02, Lp_str,
#                        verticalalignment='bottom', horizontalalignment='left',
#                        transform=ax.transAxes,
#                        color='yellow',weight='bold', fontsize=13)
            plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
            if save_plot==True:
                pp.savefig(fig)            
        pp.close()
        if close_figs:
            plt.close('all')
    #for ll in range(L+adaptBias):
    #    print 'Sparsity=',np.mean(shapes[ll]>0)
            
   
   
   #%%  All Shapes slices        
    transpose_shape= True # should we transpose shape
    ComponentsInFig=3 # number of components in Figure
    index=0 #component display index
#        z_slices=[0,1,2,3,4,5,6,7,8] #which z slices to look at slice plots/videos
    z_slices=list(range(dims[min_dim+1])) #which z slices to look at slice plots/videos
    
    if plot_shapes_slices:            
        if save_plot==True:
            pp = PdfPages(Results_folder + 'Shapes_slices'+resultsName+'.pdf')
        for ll in range(L+adaptBias):
            if index==0:
                fig=plt.figure(figsize=(18, 11))
            for dd in range(len(z_slices)):                
                ax = plt.subplot(ComponentsInFig,len(z_slices),index*len(z_slices)+dd+1) 
                temp=shapes[ll].take(dd,axis=min_dim)
                if transpose_shape:
                    temp=np.transpose(temp)                                           
                    
                mi=np.min(shapes[ll])
                ma=np.max(shapes[ll])
                im=plt.imshow(temp,vmin=mi,vmax=ma,cmap=color_map)
                plt.setp(ax,xticks=[],yticks=[])
                
                if dd==0:
                    # component number
                    ax.text(0.02, 0.8, str(ll),
                    verticalalignment='bottom', horizontalalignment='left',
                    transform=ax.transAxes,
                    color='white',weight='bold', fontsize=13)
                    #sparsity
                    spar_str=str(np.round(np.mean(shapes[ll]>0)*100,2))+'%'
                    ax.text(0.02, 0.02, spar_str,
                    verticalalignment='bottom', horizontalalignment='left',
                    transform=ax.transAxes,
                    color='white',weight='bold', fontsize=13)
                    mn=int(np.floor(mi))        # colorbar min value
                    mx=int(np.ceil(ma))         # colorbar max value
                    md=old_div((mx-mn),2)
                    divider = make_axes_locatable(ax)
                    cax = divider.append_axes("bottom", size="5%", pad=0.05)
                    cb=plt.colorbar(im,cax=cax,orientation="horizontal")
                    cb.set_ticks([mn,md,mx])
                    cb.set_ticklabels([mn,md,mx])
                    #L^p
                    for p in range(2,2,2):
                        Lp=old_div((np.sum(shapes[ll]**p))**(old_div(1,float(p))),np.sum(shapes[ll]))
                        Lp_str=str(np.round(Lp*100,2))+'%' #'L'+str(p)+'='+
                        ax.text(0.02+p*0.15, 0.02, Lp_str,
                        verticalalignment='bottom', horizontalalignment='left',
                        transform=ax.transAxes,
                        color='yellow',weight='bold', fontsize=13)
                        
                    
            plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
            index+=1
            if (ll%ComponentsInFig==(ComponentsInFig-1)) or ll==L+adaptBias-1:                    
                if save_plot==True:
                    pp.savefig(fig)    
                index=0
        pp.close()
        if close_figs:
            plt.close('all')
    #for ll in range(L+adaptBias):
    #    print 'Sparsity=',np.mean(shapes[ll]>0)
            
    #%% ###### Plot Individual neurons' shape projection with clustering
    a=ceil(sqrt(L+adaptBias))
    b=ceil(old_div((L+adaptBias),a))
    
    if plot_clustered_shape:
        from sklearn.cluster import spectral_clustering
        pp = PdfPages(Results_folder + 'ClusteredShapes'+resultsName+'.pdf')
        figs=[]
        for dd in range(len(shapes[0].shape)):
            figs.append(plt.figure(figsize=(18 , 11)))
        for ll in range(L):              
            ind=np.reshape(shapes[ll],(1,)+tuple(dims[1:]))>0
            temp=data[np.repeat(ind,dims[0],axis=0)].reshape(dims[0],-1)
            delta=1 #affinity trasnformation parameter
            clust=3 #number of cluster
            similarity=np.exp(old_div(-np.corrcoef(temp.T),delta))                    
            labels = spectral_clustering(similarity, n_clusters=clust, eigen_solver='arpack')
            ind2=np.array(np.nonzero(ind.reshape(-1))).reshape(-1)
            temp_shape=np.repeat(np.zeros_like(shapes[ll]).reshape(-1,1),clust,axis=1)
            for cc in range(clust):
                temp_shape[ind2[labels==cc],cc]=1
            temp_shape=temp_shape.reshape(tuple(dims[1:])+(clust,))

            for dd in range(len(shapes[0].shape)):
                current_fig=figs[dd]
                ax = current_fig.add_subplot(a,b,ll+1)
                if dd==2:
                    temp_shape=np.transpose(temp_shape,axes=[1,0,2,3])
                ax.imshow(temp_shape.max(dd))

                plt.setp(ax,xticks=[],yticks=[])
                plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        
        if save_plot==True:
            for dd in range(len(shapes[0].shape)):
                current_fig=figs[dd]
                pp.savefig(current_fig)
        pp.close()
        if close_figs:
            plt.close('all')
            
            

    #%% #####  Video Shapes
    if video_shapes:
        components=list(range(min(asarray([C,L]))))
        C=len(components)
        if restrict_support==True:
            shape_support=shapes[components[0]]>0            
            for cc in range(C):
                shape_support=np.logical_or(shape_support,shapes[components[cc]]>0)
            detrended_data=shape_support.reshape((1,)+tuple(dims[1:]))*detrended_data
        
        fig = plt.figure(figsize=(16,7))
        mi = 0
        ma = max(data)*scale
        #mi2 = 0
        #ma2 = max(shapes[ll])*max(activity[ll])
        
        ii=0
        #import colormaps as cmaps
        #cmap=cmaps.viridis
        cmap=color_map
        a=3
        b=1+C
        
        ax1 = plt.subplot(a,b,1)
        im1 = ax1.imshow(data[ii].max(0), vmin=mi, vmax=ma,cmap=cmap)
        title=ax1.set_title('Data')
        #plt.colorbar(im1)
        ax2=[] 
        ax4=[] 
        ax6=[]
        im2=[]
        im4=[]
        im6=[]
        
        for cc in range(C):
            ax2.append(plt.subplot(a,b,2+cc))
            comp=shapes[components[cc]].max(0)*activity_NonNegative[components[cc],ii]
            ma2=max(shapes[components[cc]].max(0))*max(activity_NonNegative[components[cc]])*scale
            im2.append(ax2[cc].imshow(comp,vmin=0,vmax=ma2,cmap=cmap))
        #ax2[0].set_title('Shape')
        #    plt.colorbar(im2)
        
        ax3 = plt.subplot(a,b,1+b)
        im3 = ax3.imshow(data[ii].max(1), vmin=mi, vmax=ma,cmap=cmap)
        
        #plt.colorbar(im3)
        
        for cc in range(C):
            ax4.append(plt.subplot(a,b,2+b+cc))
            comp=shapes[components[cc]].max(1)*activity_NonNegative[components[cc],ii]
            ma2=max(shapes[components[cc]].max(1))*max(activity_NonNegative[components[cc]])*scale
            im4.append(ax4[cc].imshow(comp,vmin=0,vmax=ma2,cmap=cmap))
        
        #plt.colorbar(im4)
        
        ax5 = plt.subplot(a,b,1+2*b)
        im5 = ax5.imshow(np.transpose(detrended_data[ii].max(2)), vmin=mi, vmax=ma,cmap=cmap)
        
        #plt.colorbar(im5)
        for cc in range(C):
            ax6.append(plt.subplot(a,b,2+2*b+cc))
            comp=np.transpose(shapes[components[cc]].max(2))*activity_NonNegative[components[cc],ii]
            ma2=max(shapes[components[cc]].max(2))*max(activity_NonNegative[components[cc]])*scale
            im6.append(ax6[cc].imshow(comp,vmin=0,vmax=ma2,cmap=cmap))
        
        #plt.colorbar(im6)
        
        fig.tight_layout()
        ComponentsActive=np.array([])
        for cc in range(C):
            ComponentsActive=np.append(ComponentsActive,np.nonzero(activity_NonNegative[components[cc]]))
        ComponentsActive=np.unique(ComponentsActive)
        
        def update(tt):
            ii=ComponentsActive[tt]
            im1.set_data(data[ii].max(0))        
            im3.set_data(data[ii].max(1))        
            im5.set_data(np.transpose(data[ii].max(2)))
        
            for cc in range(C): 
                im2[cc].set_data(shapes[components[cc]].max(0)*activity_NonNegative[components[cc],ii])
                im4[cc].set_data(shapes[components[cc]].max(1)*activity_NonNegative[components[cc],ii])
                im6[cc].set_data(np.transpose(shapes[components[cc]].max(2))*activity_NonNegative[components[cc],ii])
            title.set_text('Data, time = %.1f' % ii)
        
        if save_video==True:
            writer = animation.writers['ffmpeg'](fps=10)
            ani = animation.FuncAnimation(fig, update, frames=len(ComponentsActive), blit=True, repeat=False)
            if restrict_support==True:
                ani.save(Results_folder + 'Shapes_Restricted'+resultsName+'.mp4',dpi=dpi,writer=writer)
            else:                        
                ani.save(Results_folder + 'Shapes_'+resultsName+'.mp4',dpi=dpi,writer=writer)
        else:
            ani = animation.FuncAnimation(fig, update, frames=len(ComponentsActive), blit=True, repeat=False)
            plt.show()

    
    #%% ##### Plot denoised projection - Results

    if plot_residual_projections==True:
        
        dims=data.shape
        cmap=color_map         
        
        pic_residual=percentile(residual, 95, axis=0)
        pic_denoised = max_intensity(denoised_data, axis=0)
        pic_data=percentile(data, 95, axis=0)
        
        left  = 0.05 # the left side of the subplots of the figure
        right = 0.95   # the right side of the subplots of the figure
        bottom = 0.05   # the bottom of the subplots of the figure
        top = 0.95      # the top of the subplots of the figure
        wspace = 0.05   # the amount of width reserved for blank space between subplots
        hspace = 0.05  # the amount of height reserved for white space between subplots
        
        
        fig1=plt.figure(figsize=(11,18))
        mi=min(pic_data)
        ma=max(pic_data)
        ax = plt.subplot(311)
        im=ax.imshow(pic_data.max(0),vmin=mi,vmax=ma,cmap=cmap)
        ax.set_title('Data')
        plt.colorbar(im)
        plt.setp(ax,xticks=[],yticks=[])
        ax2 = plt.subplot(312)
        im2=ax2.imshow(max_intensity(pic_denoised,0),interpolation='None')
        ax2.set_title('Denoised')
        plt.setp(ax,xticks=[],yticks=[])
        plt.colorbar(im2)
        ax3 = plt.subplot(313)
        im3=ax3.imshow(pic_residual.max(0),cmap=cmap)
        ax3.set_title('Residual')
        plt.setp(ax,xticks=[],yticks=[])
        plt.colorbar(im3)
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        
        fig2=plt.figure(figsize=(11,18))
        mi=min(pic_data)
        ma=max(pic_data)
        ax = plt.subplot(311)
        im=ax.imshow(pic_data.max(1),vmin=mi,vmax=ma,cmap=cmap)
        ax.set_title('Data')
        plt.colorbar(im)
        plt.setp(ax,xticks=[],yticks=[])
        ax2 = plt.subplot(312)
        im2=ax2.imshow(max_intensity(pic_denoised,1),interpolation='None')
        ax2.set_title('Denoised')
        plt.colorbar(im2)
        plt.setp(ax,xticks=[],yticks=[])
        ax3 = plt.subplot(313)
        im3=ax3.imshow(pic_residual.max(1),cmap=cmap)
        ax3.set_title('Residual')
        plt.colorbar(im3)
        plt.setp(ax,xticks=[],yticks=[])
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        
        fig3=plt.figure(figsize=(11,18))
        mi=min(pic_data)
        ma=max(pic_data)
        ax = plt.subplot(311)
        im=ax.imshow(pic_data.max(2).T,vmin=mi,vmax=ma,cmap=cmap)
        ax.set_title('Data')
        plt.colorbar(im)
        plt.setp(ax,xticks=[],yticks=[])
        ax2 = plt.subplot(312)
        im2=ax2.imshow(np.transpose(max_intensity(pic_denoised,2),[1,0,2]),interpolation='None')
        ax2.set_title('denoised')
        plt.setp(ax,xticks=[],yticks=[])
        plt.colorbar(im2)
        ax3 = plt.subplot(313)
        im3=ax3.imshow(np.transpose(pic_residual.max(2)),cmap=cmap)
        ax3.set_title('Residual')
        plt.colorbar(im3)
        plt.setp(ax,xticks=[],yticks=[])
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
    
        if save_plot==True:
            pp = PdfPages(Results_folder + 'Data_Denoised_Residual_Projections'+resultsName+'.pdf')
            pp.savefig(fig1)
            pp.savefig(fig2)
            pp.savefig(fig3)
            pp.close()
    
    
    #fig = plt.figure()
    #plt.plot(MSE_array)
    #plt.xlabel('Iteration')
    #plt.ylabel('MSE')
    #plt.show()
    
     #%% ##### Plot denoised slices - Results
#    z_slices=[0,2,4,6,8] #which z slices to look at slice plots/videos
    z_slices=list(range(dims[min_dim+1])) #which z slices to look at slice plots/videos
    D=len(z_slices)
    if plot_residual_slices==True:
        
        dims=data.shape
        cmap=color_map         
        
        pic_residual=percentile(residual, 95, axis=0)
        pic_denoised = max_intensity(denoised_data, axis=0)
        pic_data=percentile(data, 95, axis=0)
        
        
        a=3 #number of rows
        fig1=plt.figure(figsize=(18,11))
        mi=min(pic_data)
        ma=max(pic_data)
        for kk in range(D):        
            ax2 = plt.subplot(a,D,kk+1)
            temp=np.squeeze(np.take(pic_denoised,(z_slices[kk],),axis=min_dim))
            im2=ax2.imshow(temp,interpolation='None')
            ax2.set_title('Denoised')
            plt.setp(ax2,xticks=[],yticks=[])
            plt.colorbar(im2)
            ax = plt.subplot(a,D,kk+D+1)
            temp=np.squeeze(np.take(pic_data,(z_slices[kk],),axis=min_dim))
            im=ax.imshow(temp,vmin=mi,vmax=ma,cmap=cmap)
            ax.set_title('Data')
            plt.colorbar(im)
            plt.setp(ax,xticks=[],yticks=[])
            ax3 = plt.subplot(a,D,kk+2*D+1)
            temp=np.squeeze(np.take(pic_residual,(z_slices[kk],),axis=min_dim))
            im3=ax3.imshow(temp,cmap=cmap)
            ax3.set_title('Residual')
            plt.setp(ax3,xticks=[],yticks=[])
            plt.colorbar(im3)
            plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
            
        
            if save_plot==True:
                pp = PdfPages(Results_folder + 'Data_Denoised_Residual_Slice_'+resultsName+'.pdf')
                pp.savefig(fig1)
                pp.close()
        
        
    #fig = plt.figure()
    #plt.plot(MSE_array)
    #plt.xlabel('Iteration')
    #plt.ylabel('MSE')
    #plt.show()


 
    #%% #####  2D Video Residual    
    if video_residual_2D:
        fig = plt.figure(figsize=(16,7))
        mi = 0
        ma = np.percentile(data,satuartion_percentile)
        mi3 = 0
        ma3 = old_div(ma,np.max([np.floor(old_div(ma,np.percentile(residual[residual>0],satuartion_percentile))),1]))

        ii=0
        #import colormaps as cmaps
        #cmap=cmaps.viridis
        cmap=color_map        
        
        a=1
        b=3
        
        im_array=[]
        temp=np.shape(data[ii])                   

        ax1 = plt.subplot(a,b,1)            

        pic=denoised_data[ii]
        im_array += [ax1.imshow(pic,interpolation='None')]
        ax1.set_title('Denoised')
        plt.setp(ax1,xticks=[],yticks=[])
        
        ax2 = plt.subplot(a,b,2)
        pic=data[ii]
            
        im_array += [ax2.imshow(pic, vmin=mi, vmax=ma,cmap=cmap)]
        title=ax2.set_title('Data')  
        plt.setp(ax2,xticks=[],yticks=[])
        divider = make_axes_locatable(ax2)
        cax2 = divider.append_axes("right", size="5%", pad=0.05)
        plt.colorbar(im_array[-1], cax=cax2)          

        
        
        ax3 = plt.subplot(a,b,3)            
        pic=residual[ii]   
        im_array += [ax3.imshow(pic, vmin=mi3, vmax=ma3,cmap=cmap)]
        ax3.set_title('Residual x' + '%.1f' % (old_div(ma,ma3)))
        plt.setp(ax3,xticks=[],yticks=[])
        divider = make_axes_locatable(ax3)
        cax3 = divider.append_axes("right", size="5%", pad=0.05)
        plt.colorbar(im_array[-1], cax=cax3)
        

#        fig.tight_layout()
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
            
        def update(ii):
            im_array[0].set_data(denoised_data[ii])
            im_array[1].set_data(data[ii])        
            im_array[2].set_data(residual[ii])                     
            
            if frame_rate!=[]:
                title.set_text('Data, time = %.2f sec' % (old_div(ii,frame_rate)))
            else:
                title.set_text('Data, time = %.1f' % ii)
        
        if save_video==True:
            writer = animation.writers['ffmpeg'](fps=10)
            ani = animation.FuncAnimation(fig, update, frames=len(data), blit=False, repeat=False)
            ani.save(Results_folder + 'Data_Denoised_Residual_2D_' +resultsName+'.avi',dpi=dpi,writer=writer)
        else:
            ani = animation.FuncAnimation(fig, update, frames=len(data), blit=False, repeat=False)
            plt.show()  
   
    #%% #####  Video Projections Residual    
    if video_residual:
        fig = plt.figure(figsize=(16,7))
        mi = 0
        ma = max(data)*scale
        mi3 = 0
        ma3 = max(residual)*scale

        ii=0
        #import colormaps as cmaps
        #cmap=cmaps.viridis
        cmap=color_map
        
        spatial_dims_ind=list(range(len(dims)-1))
        D=len(spatial_dims_ind)
        a=D
        b=3
        
        im_array=[]
        transpose_flags=[]
        for kk in range(D):
            transpose_flags+= [False]
            temp=np.shape(data[ii].max(spatial_dims_ind[kk]))
            if temp[0]>temp[1]:
                transpose_flags[kk]=True    
                
        for kk in range(D):
            ax1 = plt.subplot(a,b,D*kk+1)            
            if transpose_flags[kk]==False:
                pic=max_intensity(denoised_data[ii],spatial_dims_ind[kk])
            else:
                pic=np.transpose(max_intensity(denoised_data[ii],spatial_dims_ind[kk]),[1,0,2])  
            im_array += [ax1.imshow(pic,interpolation='None')]
            ax1.set_title('Denoised')
            plt.colorbar(im_array[-1])
            plt.setp(ax1,xticks=[],yticks=[])
            
            ax2 = plt.subplot(a,b,D*kk+2)
            if transpose_flags[kk]==False:
                pic=data[ii].max(spatial_dims_ind[kk])
            else:
                pic=np.transpose(data[ii].max(spatial_dims_ind[kk]))
                
            im_array += [ax2.imshow(pic, vmin=mi, vmax=ma,cmap=cmap)]
            title=ax2.set_title('Data')            
            plt.colorbar(im_array[-1])
            plt.setp(ax2,xticks=[],yticks=[])
            
            ax3 = plt.subplot(a,b,D*kk+3)            
            if transpose_flags[kk]==False:
                pic=residual[ii].max(spatial_dims_ind[kk])
            else:
                pic=np.transpose(residual[ii].max(spatial_dims_ind[kk]))        
            im_array += [ax3.imshow(pic, vmin=mi3, vmax=ma3,cmap=cmap)]
            ax3.set_title('Residual')
            plt.colorbar(im_array[-1])
            plt.setp(ax3,xticks=[],yticks=[])

#        fig.tight_layout()
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
            
        def update(ii):
            for kk in range(D):
                if transpose_flags[kk]==False:
                    im_array[kk*D].set_data(max_intensity(denoised_data[ii],spatial_dims_ind[kk]))
                    im_array[kk*D+1].set_data(data[ii].max(spatial_dims_ind[kk]))        
                    im_array[kk*D+2].set_data(residual[ii].max(spatial_dims_ind[kk]))                     
                else:
                    im_array[kk*D].set_data(np.transpose(max_intensity(denoised_data[ii],spatial_dims_ind[kk]),[1,0,2]))
                    im_array[kk*D+1].set_data(np.transpose(data[ii].max(spatial_dims_ind[kk])))        
                    im_array[kk*D+2].set_data(np.transpose(residual[ii].max(spatial_dims_ind[kk])))                     
            
            title.set_text('Data, time = %.1f' % ii)
        
        if save_video==True:
            writer = animation.writers['ffmpeg'](fps=10)
            ani = animation.FuncAnimation(fig, update, frames=len(data), blit=False, repeat=False)
            ani.save(Results_folder + 'Data_Denoised_Residual_Projections'+resultsName+'.mp4',dpi=dpi,writer=writer)
        else:
            ani = animation.FuncAnimation(fig, update, frames=len(data), blit=False, repeat=False)
            plt.show()  
            
    #%% #####  Video Slices Residual    
#    z_slices=[0,2,4,6,8] #which z slices to look at slice plots/videos    
    z_slices=list(range(dims[min_dim+1])) #which z slices to look at slice plots/videos
    
    if video_slices:
        fig = plt.figure(figsize=(16,7))
        mi = 0
        ma = np.percentil(data[data>0],satuartion_percentile)
        mi3 = 0
        ma3 = np.percentil(data[data>0],satuartion_percentile)

        ii=0
        #import colormaps as cmaps
        #cmap=cmaps.viridis
        cmap=color_map
        a=3
        
        D=len(z_slices) #number of spatial dimensions
        im_array=[]
        transpose_flag= True
                
        for kk in range(D):
            ax1 = plt.subplot(a,D,kk+1)            
            temp=np.squeeze(np.take(denoised_data[ii],(z_slices[kk],),axis=min_dim))
            if transpose_flag==False:
                pic=temp
            else:
                pic=np.transpose(temp,[1,0,2])  
            im_array += [ax1.imshow(pic,interpolation='None')]
            ax1.set_title('Denoised, z='+ str(z_slices[kk]+1))
            plt.colorbar(im_array[-1])
            plt.setp(ax1,xticks=[],yticks=[])
            
            ax2 = plt.subplot(a,D,kk+D+1)
            temp=np.squeeze(np.take(data[ii],(z_slices[kk],),axis=min_dim))
            if transpose_flag==False:
                pic=temp
            else:
                pic=np.transpose(temp)
                
            im_array += [ax2.imshow(pic, vmin=mi, vmax=ma,cmap=cmap)]
            title=ax2.set_title('Data')            
            plt.colorbar(im_array[-1])
            plt.setp(ax2,xticks=[],yticks=[])
            
            ax3 = plt.subplot(a,D,kk+2*D+1) 
            temp=np.squeeze(np.take(residual[ii],(z_slices[kk],),axis=min_dim))
            if transpose_flag==False:
                pic=temp
            else:
                pic=np.transpose(temp)       
            im_array += [ax3.imshow(pic, vmin=mi3, vmax=ma3,cmap=cmap)]
            ax3.set_title('Residual')
            plt.colorbar(im_array[-1])
            plt.setp(ax3,xticks=[],yticks=[])

#        fig.tight_layout()
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)        
        
        def update(ii):
            for kk in range(D):
                temp1=np.squeeze(np.take(denoised_data[ii],(z_slices[kk],),axis=min_dim))
                temp2=np.squeeze(np.take(data[ii],(z_slices[kk],),axis=min_dim))
                temp3=np.squeeze(np.take(residual[ii],(z_slices[kk],),axis=min_dim))
                if transpose_flag==False:                    
                    im_array[a*kk].set_data(temp1)
                    im_array[a*kk+1].set_data(temp2)        
                    im_array[a*kk+2].set_data(temp3)                     
                else:
                    im_array[a*kk].set_data(np.transpose(temp1,[1,0,2]))
                    im_array[a*kk+1].set_data(np.transpose(temp2))        
                    im_array[a*kk+2].set_data(np.transpose(temp3))                     
            
            title.set_text('Data, time = %.1f' % ii)
        
        if save_video==True:
            writer = animation.writers['ffmpeg'](fps=10)
            ani = animation.FuncAnimation(fig, update, frames=len(data), blit=False, repeat=False)
            ani.save(Results_folder + 'Data_Denoised_Residual_Slices'+resultsName+'.mp4',dpi=dpi,writer=writer)
        else:
            ani = animation.FuncAnimation(fig, update, frames=len(data), blit=False, repeat=False)
            plt.show()              
 def test_add_integer_current_value(self, pi_point):
     """Test adding an integer to a PIPoint via the current value."""
     point2 = pi_point.point + 1
     assert round(point2.current_value - (pi_point.values[-1] + 1),
                  ndigits=7) == 0
 def test_multiply_integer_two_current_value(self, pi_point):
     """Test adding an integer to a PIPoint via the current value."""
     point2 = pi_point.point * 2
     assert round(point2.current_value - (pi_point.values[-1] * 2),
                  ndigits=7) == 0
Ejemplo n.º 59
0
min_token_freq = 3 # 단어 최소 등장 빈도

run_start = timeit.default_timer() # 시간 측정

print('Loading raw data...')
nltk.download('brown') # nltk에서 brown 말뭉치 다운로드

# all_seqs = [['and', 'how', 'right', 'she', 'was', '.'], ['the', 'operator', 'asked', 'pityingly', '.']]
# brown 말뭉치 문장(길이가 x 이상 y이하) 추출 -> 추출된 문장의 단어들을 소문자화 후 list에 보관
# all_seqs = [['i', 'am', 'a', 'boy],['you', 'are', 'a', 'girl']...]
all_seqs = [[token.lower() for token in seq] for seq in nltk.corpus.brown.sents() if 5 <= len(seq) <= 30]
rand.shuffle(all_seqs) # all_seqs 랜덤 섞기
all_seqs = all_seqs[:50000] # all_seqs 중에 20000개만 사용


trainingset_size = round(0.9 * len(all_seqs)) # 9할을 학습데이터로
train_seqs = all_seqs[:trainingset_size] # 처음부터 trainingset_size까지를 train 데이터로
validationset_size = len(all_seqs) - trainingset_size # 1할을 검증데이터로
val_seqs = all_seqs[-validationset_size:] # 처음부터 validationset_size까지를 valid 데이터로

print('Training set size:', trainingset_size)
print('Validation set size:', validationset_size)

all_tokens = (token for seq in train_seqs for token in seq) # all_tokens = ('and', 'how', 'right', ... )
token_freqs = collections.Counter(all_tokens) # {'boy': freq, 'girl':freq, ....}
vocab = sorted(token_freqs.keys(), key=lambda token: (-token_freqs[token], token)) # 단어 빈도수 정렬
# 단어 최소 등장 빈도 이하인 단어들 모두 제거
while token_freqs[vocab[-1]] < min_token_freq:
  vocab.pop()
vocab_size = len(vocab) + 2  # 문장 맨 앞, 맨 뒤 마커로 +1, 미등록어로 +1
  def test_bigquery_tornadoes_it(self):
    test_pipeline = TestPipeline(is_integration_test=True)

    # Set extra options to the pipeline for test purpose
    project = test_pipeline.get_option('project')

    dataset = 'BigQueryTornadoesIT'
    table = 'monthly_tornadoes_%s' % int(round(time.time() * 1000))
    output_table = '.'.join([dataset, table])
    query = 'SELECT month, tornado_count FROM `%s`' % output_table

    pipeline_verifiers = [PipelineStateMatcher(),
                          BigqueryMatcher(
                              project=project,
                              query=query,
                              checksum=self.DEFAULT_CHECKSUM)]
    extra_opts = {'output': output_table,
                  'on_success_matcher': all_of(*pipeline_verifiers)}

    # Register cleanup before pipeline execution.
    # Note that actual execution happens in reverse order.
    self.addCleanup(utils.delete_bq_table, project, dataset, table)

    # Get pipeline options from command argument: --test-pipeline-options,
    # and start pipeline job by calling pipeline main function.
    bigquery_tornadoes.run(
        test_pipeline.get_full_options_as_args(**extra_opts))