Ejemplo n.º 1
0
 def from_my_json(j: MyPassageTimeJson) -> PassageTime:
     return PassageTime(
         arrival=Maybe.of(
             j.get("arrival")).map(lambda j: ArrivalTime.from_my_json(j)),
         departure=Maybe.of(j.get("departure")).map(
             lambda j: DepartureTime.from_my_json(j)),
     )
Ejemplo n.º 2
0
 def from_my_json(cls: Type[T], j: MyArrivalDepartureJson) -> T:
     return cls(
         scheduled=Maybe.of(j.get("scheduled")).map(
             lambda s: datetime.fromisoformat(cast(str, s))),
         actual_or_prediction=Maybe.of(j.get("actual_or_prediction")).map(
             lambda s: datetime.fromisoformat(cast(str, s))),
         service_mode=Maybe.of(cast(Optional[int], j.get("service_mode"))),
         type=Maybe.of(cast(Optional[int], j.get("type"))),
         direction_text=Maybe.of(
             cast(Optional[str], j.get("direction_text"))),
     )
Ejemplo n.º 3
0
def stop_by_id(c: connection, s: m.StopId) -> Maybe[Stop]:
    with c.cursor() as cu:
        cu.execute(
            """
            select * from stops
            where id = %s
            """,
            [s.raw],
        )
        return Maybe.of(cu.fetchone()).map(Stop.from_db_row)
Ejemplo n.º 4
0
 def from_web_timetable(wt: WebTimetable, stops_by_name: Dict[str, Stop],
                        route_name: str) -> Timetable:
     tvs = set()
     for t in wt.variants():
         if t[0] == route_name:
             stops = tuple(
                 Maybe.justs(
                     unique_justseen(stops_from_names(t[1],
                                                      stops_by_name))))
             tvs.add(TimetableVariant(t[0], stops))
     return Timetable(wt.table.caption.string, tvs)
Ejemplo n.º 5
0
 def from_json(cls: Type[T], json: Dict[str, Any]) -> T:
     return cls(
         scheduled=Maybe.of(json.get("scheduled_passage_time_utc")).map(
             lambda x: datetime.fromtimestamp(x, timezone(timedelta(
                 hours=1))).replace(tzinfo=None)),
         actual_or_prediction=Maybe.of(
             json.get("actual_passage_time_utc")).map(
                 lambda x: datetime.fromtimestamp(
                     x, timezone(timedelta(hours=1))).replace(tzinfo=None)),
         service_mode=Maybe.of(json.get("service_mode")),
         type=Maybe.of(json.get("type")),
         direction_text=Maybe.of(json.get(
             "multilingual_direction_text")).bind(lambda j: Maybe.of(
                 cast(Dict[str, str], j).get("defaultValue"))),
     )
Ejemplo n.º 6
0
def live_test(stop_id: StopId) -> None:
    pd.set_option("display.max_rows", 1_000_000_000)
    pd.set_option("display.max_columns", 1_000_000_000)
    pd.set_option("display.width", 1_000_000_000)
    warnings.simplefilter("ignore")
    stop = stop_by_id(default_connection(), stop_id).value
    routes_by_id = db.routes_by_id()
    routes_by_name = db.routes_by_name()
    timetables = [
        tt.value for tt in db.timetables(routes_by_name["220"].id)
        if isinstance(tt, Right)
    ]
    variants = {v for timetable in timetables for v in timetable.variants}
    filtered_variants = {v for v in variants if stop in v.stops}
    timetable = sorted(filtered_variants, key=lambda v: len(v.stops))[-1]
    route_sections = list(prediction.route_sections(timetable.stops))
    snapshots: Dict[VehicleId, List[BusSnapshot]] = {}
    print("Training predictors…")
    preprocessed_by_timetable = dict(read_preprocessed_data("220"))
    preprocessed = preprocessed_by_timetable[timetable]
    bins = [time(i) for i in range(23)] + [time(23, 59, 59, 999_999)]
    average_predictors = train_average_predictors(preprocessed,
                                                  stop.name + " [arrival]")
    binned_predictors = train_binned_average_predictors(
        preprocessed, stop.name + " [arrival]", bins)
    day_binned_predictors = train_day_binned_predictors(
        preprocessed, stop.name + " [arrival]", bins)
    print("Finished training.")
    responses: Deque[DataFrame] = deque(maxlen=720)
    arrived_passages: Dict[PassageId, datetime] = {}
    stats_output_file = Path(
        f"/Users/Noel/Developer/Projects/Busboy/data/live/{stop.name}-{datetime.now().date().isoformat()}.csv"
    )
    while True:
        try:
            print("-" * 80)
            loop_start = datetime.now()
            response = (stop_passage(
                stop.id,
                timeout=5).dataframe().sort_values("scheduled_arrival"))
            response["poll_time"] = loop_start
            response = response[response["predicted_arrival"] > loop_start -
                                timedelta(minutes=10)]
            response["route"] = response["route"].apply(
                lambda r: Maybe.of(routes_by_id.get(RouteId(r))).map(
                    lambda r: r.name).or_else(None))
            response = response[response["route"] == "220"]
            response["sections"] = [
                containing_sections(route_sections, r.longitude, r.latitude)
                for r in response.itertuples()
            ]
            arrived = [
                arrived_passages.get(p.id.value, pd.NaT)
                for p in response["passage"]
            ]
            my_predictions = [pd.NaT] * len(response["passage"])
            binned_predictions = [pd.NaT] * len(response["passage"])
            response["day_binned_prediction"] = pd.NaT
            last_stops = [None] * len(response["passage"])
            for row, passage in enumerate(response["passage"]):
                if isinstance(passage.vehicle, Just):
                    snapshot = BusSnapshot.from_passage(passage, loop_start)
                    snapshots.setdefault(passage.vehicle.value,
                                         []).append(snapshot)
                    timetable_journeys = separate_journeys(
                        snapshots[passage.vehicle.value],
                        {timetable},
                        {timetable: route_sections},
                    )
                    journeys = timetable_journeys.get(timetable)
                    if journeys is not None:
                        journeys = journeys.fillna(value=pd.NaT)
                        nonempty = journeys.loc[:, journeys.notna().any()]
                        if len(nonempty.columns) > 0:
                            last = nonempty.columns[-1]
                            last_stops[row] = last
                            if last in average_predictors:
                                predicted_travel_time = average_predictors[
                                    last].predict(journeys)
                                predicted_arrival = journeys[last].iloc[
                                    -1] + timedelta(
                                        seconds=predicted_travel_time[-1])
                                my_predictions[row] = predicted_arrival
                            binned_predictor = binned_predictors(
                                last, loop_start.time())  # should be last_time
                            if binned_predictor is not None:
                                predicted_travel_time = binned_predictor.predict(
                                    journeys)
                                predicted_arrival = journeys[last].iloc[
                                    -1] + timedelta(
                                        seconds=predicted_travel_time[-1])
                                binned_predictions[row] = predicted_arrival
                            day_binned_predictor = day_binned_predictors(
                                last, loop_start)  # should be last_day
                            if day_binned_predictor is not None:
                                predicted_travel_time = day_binned_predictor.predict(
                                    journeys)
                                predicted_arrival = journeys[last].iloc[
                                    -1] + timedelta(
                                        seconds=predicted_travel_time[-1])
                                if not pd.isnull(predicted_arrival):
                                    response["day_binned_prediction"][
                                        row] = predicted_arrival
                            if ((stop.name + " [arrival]") in nonempty.columns
                                    and passage.id.value
                                    not in arrived_passages):
                                # discard journey data
                                arrival_time = nonempty[stop.name +
                                                        " [arrival]"].iloc[-1]
                                arrived[row] = arrival_time
                                arrived_passages[
                                    passage.id.value] = arrival_time
                                # display prediction stats
                                prediction_results = evaluate_predictions(
                                    responses, passage, arrival_time)
                                prediction_results[
                                    "route"] = passage.route.map(
                                        lambda id: id.raw).optional()
                                prediction_results["target_stop"] = stop.id
                                if stats_output_file.exists():
                                    prediction_results.to_csv(
                                        str(stats_output_file),
                                        mode="a",
                                        header=False,
                                        index=False,
                                    )
                                else:
                                    prediction_results.to_csv(
                                        str(stats_output_file), index=False)
            response["average_time_prediction"] = my_predictions
            response["binned_average_time_prediction"] = binned_predictions
            response["arrived"] = arrived
            response["last_stop"] = last_stops
            display(response)
            responses.appendleft(response)
            # delete old arrival data
            for passage, arrival_time in list(arrived_passages.items()):
                if arrival_time < loop_start - timedelta(minutes=10):
                    del arrived_passages[passage]
            sleep(max(0, 10 - (datetime.now() - loop_start).total_seconds()))
        except KeyboardInterrupt:
            print("Exiting")
            return
        except Exception as e:
            # print(f"Got an exception: {e}")
            traceback.print_exc()
            print()
            print("Continuing…")
            sleep(max(0, 10 - (datetime.now() - loop_start).total_seconds()))
Ejemplo n.º 7
0
 def from_json(json: Dict[str, Any]) -> PassageTime:
     a = Maybe.of(json.get("arrival_data")).map(ArrivalTime.from_json)
     d = Maybe.of(json.get("departure_data")).map(DepartureTime.from_json)
     return PassageTime(arrival=a, departure=d)
Ejemplo n.º 8
0
 def from_json(json: Dict[str, Any]) -> Passage:
     time = PassageTime.from_json(json)
     try:
         return Passage(
             id=Maybe.of(json.get("duid")).map(PassageId),
             last_modified=Maybe.of(
                 json.get("last_modification_timestamp")).map(
                     lambda j: datetime.fromtimestamp(
                         j / 1000, timezone(timedelta(hours=1))).replace(
                             tzinfo=None)),
             is_deleted=Maybe.of(json.get("is_deleted")),
             route=Maybe.of(json.get("route_duid")).bind(lambda j: Maybe.of(
                 cast(Dict[str, str], j).get("duid"))).map(RouteId),
             direction=Maybe.of(json.get("direction")),
             trip=Maybe.of(json.get("trip_duid")).map(
                 lambda j: cast(Dict[str, str], j)).bind(
                     lambda j: Maybe.of(j.get("duid"))).map(TripId),
             stop=Maybe.of(json.get("stop_point_duid")).map(
                 lambda j: cast(Dict[str, str], j)).bind(
                     lambda j: Maybe.of(j.get("duid"))).map(StopId),
             vehicle=Maybe.of(json.get("vehicle_duid")).map(
                 lambda j: cast(Dict[str, str], j)).bind(
                     lambda j: Maybe.of(j.get("duid"))).map(VehicleId),
             time=time,
             congestion=Maybe.of(json.get("congestion_level")),
             accuracy=Maybe.of(json.get("accuracy_level")),
             status=Maybe.of(json.get("status")),
             is_accessible=Maybe.of(json.get("is_accessible")).map(bool),
             latitude=Maybe.of(json.get("latitude")),
             longitude=Maybe.of(json.get("longitude")),
             bearing=Maybe.of(json.get("bearing")),
             pattern=Maybe.of(
                 json.get("pattern_duid")).bind(lambda j: Maybe.of(
                     cast(Dict[str, str], j).get("duid"))).map(PatternId),
             has_bike_rack=Maybe.of(json.get("has_bike_rack")).map(bool),
             category=Maybe.of(json.get("category")),
         )
     except KeyError as e:
         raise Exception(json, e)