Ejemplo n.º 1
0
    def prepare(cls, model, device='CPU', **kwargs):
        '''
        For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph,

        for example, if "img" is the input blob for the predict_net, we require that in init_graph and in
        initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since
        there is no way we can know which blob is the input of the predict_graph.
        '''
        super(Caffe2Backend, cls).prepare(model, device, **kwargs)

        opset_version = None
        for imp in model.opset_import:
            if not imp.HasField("domain") or imp.domain == "":
                opset_version = imp.version
                if imp.version > cls._known_opset_version:
                    warnings.warn(
                        "This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}.  We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail."
                        .format(cls._known_opset_version, imp.version))
            else:
                warnings.warn("Unrecognized operator set {}".format(
                    imp.domain))
        if opset_version is None:
            if model.ir_version >= 0x00000003:
                raise RuntimeError(
                    "Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)"
                )
            else:
                opset_version = 1

        ws = Workspace()
        device_option = get_device_option(Device(device))

        # Directly load initializer data into blobs in workspace
        cls._direct_initialize_parameters(
            model.graph.initializer,
            ws,
            device_option,
        )

        initialized = {init.name for init in model.graph.initializer}

        cls._direct_initialize_inputs(
            model.graph.input,
            initialized,
            ws,
            device_option,
        )

        uninitialized = [
            value_info.name for value_info in model.graph.input
            if value_info.name not in initialized
        ]

        init_net, predict_net = cls._onnx_model_to_caffe2_net(
            model, device, opset_version, False)

        retval = Caffe2Rep(init_net, predict_net, ws, uninitialized)
        return retval
Ejemplo n.º 2
0
    def prepare(cls, model, device='CPU', raw_values_dict=None, **kwargs):
        '''
        For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph,

        for example, if "img" is the input blob for the predict_net, we require that in init_graph and in
        initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since
        there is no way we can know which blob is the input of the predict_graph.
        '''
        if not kwargs.pop('no_check_UNSAFE', False):
            super(Caffe2Backend, cls).prepare(model, device, **kwargs)
        opset_version = None
        for imp in model.opset_import:
            if not imp.HasField("domain") or imp.domain == "":
                opset_version = imp.version
                if imp.version > cls._known_opset_version:
                    warnings.warn(
                        "This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}.  We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail."
                        .format(cls._known_opset_version, imp.version))
            else:
                warnings.warn("Unrecognized operator set {}".format(
                    imp.domain))
        if opset_version is None:
            if model.ir_version >= 0x00000003:
                raise RuntimeError(
                    "Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)"
                )
            else:
                opset_version = 1

        model = onnx.shape_inference.infer_shapes(model)

        # Check whether we have RNN related ops
        pred_model = cls.optimize_onnx(model, predict=True)
        rnn_nodes = []
        for node in pred_model.graph.node:
            if node.op_type in {'LSTM', 'GRU', 'RNN'}:
                rnn_nodes.append(node)

        # Build the C++ backend
        # TODO: build a predictor that supports GPU
        #       And for RNN nets, we need to avoid adding init_net
        use_cpp_backend = device == 'CPU' and not rnn_nodes
        # use python backend for now
        use_cpp_backend = False
        if use_cpp_backend:
            c2_rnn_ops = []
            if rnn_nodes:
                init_model = cls.optimize_onnx(model, init=True)
                for node in rnn_nodes:
                    c2ops = cls._onnx_node_to_caffe2_op(
                        init_model, pred_model, node, opset_version)
                    init_ops = [x.SerializeToString() for x in c2ops.init_ops]
                    ops = [x.SerializeToString() for x in c2ops.ops]
                    external_inputs = c2ops.interface_blobs
                    c2_rnn_ops.append(
                        C.Caffe2Ops(init_ops, ops, external_inputs))
                del init_model

            cbackend = C.Caffe2Backend(cls._dummy_name)
            if raw_values_dict:
                cls._external_value_resolution_pass(model, raw_values_dict)
            rep = cbackend.prepare(model.SerializeToString(), device,
                                   c2_rnn_ops)
            # For testing
            # Dump the net descriptions to file for comparison with the Python ones
            if "ONNX_CAFFE2_DEBUG" in os.environ:
                pred_net_str = rep.pred_net()
                pn = caffe2_pb2.NetDef()
                pn.ParseFromString(pred_net_str)
                init_net_str = rep.init_net()
                inn = caffe2_pb2.NetDef()
                inn.ParseFromString(init_net_str)
                with open("cpp.txt", "w") as f:
                    f.write("pred_net: \n{}".format(pn))

            rep_wrapper = Caffe2CppRep(rep)
            return rep_wrapper
        else:
            ws = Workspace()
            device_option = get_device_option(Device(device))

            init_net, predict_net = cls._onnx_model_to_caffe2_net(
                model, device, opset_version, False)

            if raw_values_dict:
                cls._external_value_resolution_pass(model, raw_values_dict)

            # Directly load initializer data into blobs in workspace
            cls._direct_initialize_parameters(
                model.graph.initializer,
                ws,
                device_option,
            )

            initialized = {init.name for init in model.graph.initializer}

            cls._direct_initialize_inputs(
                model.graph.input,
                initialized,
                ws,
                device_option,
            )

            uninitialized = [
                value_info.name for value_info in model.graph.input
                if value_info.name not in initialized
            ]

            if "ONNX_CAFFE2_DEBUG" in os.environ:
                with open("python.txt", "w") as f:
                    f.write("pred_net: \n{}".format(predict_net))
            retval = Caffe2Rep(init_net, predict_net, ws, uninitialized)
            return retval
Ejemplo n.º 3
0
    def prepare(cls, model, device='CPU', raw_values_dict=None, **kwargs):
        '''
        For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph,

        for example, if "img" is the input blob for the predict_net, we require that in init_graph and in
        initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since
        there is no way we can know which blob is the input of the predict_graph.
        '''
        if not kwargs.pop('no_check_UNSAFE', False):
            super(Caffe2Backend, cls).prepare(model, device, **kwargs)
        opset_version = None
        for imp in model.opset_import:
            if not imp.HasField("domain") or imp.domain == "":
                opset_version = imp.version
                if imp.version > cls._known_opset_version:
                    warnings.warn(
                        "This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}.  We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail."
                        .format(cls._known_opset_version, imp.version))
            else:
                warnings.warn("Unrecognized operator set {}".format(
                    imp.domain))
        if opset_version is None:
            if model.ir_version >= 0x00000003:
                raise RuntimeError(
                    "Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)"
                )
            else:
                opset_version = 1

        # Prior to onnx version update to onnx-1.8.0, errors caused by failures in
        # in the onnx shape inference call were being supressed. Hence a try-catch block
        # is added around the infer_shapes call to avoid these failures and preserve status
        try:
            model = onnx.shape_inference.infer_shapes(model)
        except RuntimeError:
            warnings.warn(
                "ShapeInferenceWarning: Inferred shape and existing shape differ in rank"
            )

        ws = Workspace()
        device_option = get_device_option(Device(device))

        init_net, predict_net = cls._onnx_model_to_caffe2_net(
            model, device, opset_version, False)

        if raw_values_dict:
            cls._external_value_resolution_pass(model, raw_values_dict)

        # Directly load initializer data into blobs in workspace
        cls._direct_initialize_parameters(
            model.graph.initializer,
            ws,
            device_option,
        )

        initialized = {init.name for init in model.graph.initializer}

        cls._direct_initialize_inputs(
            model.graph.input,
            initialized,
            ws,
            device_option,
        )

        uninitialized = [
            value_info.name for value_info in model.graph.input
            if value_info.name not in initialized
        ]

        retval = Caffe2Rep(init_net, predict_net, ws, uninitialized)
        return retval