Ejemplo n.º 1
0
def get_spout_emissions(metric_client: HeronMetricsClient, tracker_url: str,
                        topology_id: str, cluster: str, environ: str,
                        start: dt.datetime, end: dt.datetime) -> pd.DataFrame:

    emit_counts: pd.DataFrame = metric_client.get_emit_counts(
        topology_id, cluster, environ, start, end)

    lplan: Dict[str, Any] = tracker.get_logical_plan(tracker_url, cluster,
                                                     environ, topology_id)

    spout_emits: pd.DataFrame = \
        emit_counts[emit_counts.component.isin(lplan["spouts"].keys())]

    return spout_emits
Ejemplo n.º 2
0
def plot_emit_complete_latency(metrics_client: HeronMetricsClient,
                               topology_id: str, cluster: str, environ: str,
                               start: dt.datetime, end: dt.datetime,
                               **kwargs: Union[str, int, float]):

    emit_counts: pd.DataFrame = metrics_client.get_emit_counts(
        topology_id, cluster, environ, start, end, **kwargs)

    complete_latencies: pd.DataFrame = metrics_client.get_complete_latencies(
        topology_id, cluster, environ, start, end, **kwargs)

    spouts: np.ndarray = complete_latencies.component.unique()

    emit_counts = emit_counts[emit_counts.component.isin(spouts)]

    combined: pd.DataFrame = emit_counts.merge(
        complete_latencies, on=["task", "timestamp"])[["task", "timestamp",
                                                       "emit_count",
                                                       "latency_ms"]]

    for (task, stream), data in combined.groupby(["task", "stream"]):
        fig, ax1 = plt.subplots()

        color = 'tab:red'
        ax1.set_xlabel('timestamp')
        ax1.set_ylabel('latency (ms)', color=color)
        ax1.plot(data.timestamp, data.latency_ms, color=color)
        ax1.tick_params(axis='y', labelcolor=color)

        # instantiate a second axes that shares the same x-axis
        ax2 = ax1.twinx()

        color = 'tab:blue'
        # we already handled the x-label with ax1
        ax2.set_ylabel('count', color=color)
        ax2.plot(data.timestamp, data.emit_count, color=color)
        ax2.tick_params(axis='y', labelcolor=color)

        fig.tight_layout()  # otherwise the right y-label is slightly clipped
        plt.show()
Ejemplo n.º 3
0
def lstsq_io_ratios(metrics_client: HeronMetricsClient,
                    graph_client: GremlinClient, topology_id: str,
                    cluster: str, environ: str,
                    start: dt.datetime, end: dt.datetime, bucket_length: int,
                    **kwargs: Union[str, int, float]) -> pd.DataFrame:
    """ This method will calculate the input/output ratio for each instance in
    the supplied topology using data aggregated from the defined period. The
    method uses least squares regression to calculate a coefficient for each
    input stream into a instance such that the total output amount for a given
    output stream is sum of all input stream arrival amounts times their
    coefficient.

    *NOTE*: This method assumes that there is an (approximately) linear
    relationship between the inputs and outputs of a given component.

    Arguments:
        metrics_client (HeronMetricsClient):    The client instance for the
                                                metrics database.
        graph_client (GremlinClient):   The client instance for the graph
                                        database.
        topology_id (str):  The topology identification string.
        start (dt.datetime):    The UTC datetime object for the start of the
                                metric gathering period.
        end (dt.datetime):  The UTC datetime object for the end of the metric
                            gathering period.
        bucket_length (int):    The length in seconds that the metrics should
                                be aggregated into. *NOTE*: For the least
                                squares regression to work the number of
                                buckets must exceed the highest number of input
                                streams into the component of the topology.
        **kwargs:   Additional keyword arguments that will be passed to the
                    metrics client object. Consult the documentation for the
                    specific metrics client beings used.
    Returns:
        pandas.DataFrame:   A DataFrame with the following columns:

        * task: Task ID integer.
        * output_stream: The output stream name.
        * input_stream: The input stream name.
        * source_component: The name of the source component for the input
          stream.
        * coefficient: The value of the input amount coefficient for this
          output stream, inputs stream source component combination.
    """

    LOG.info("Calculating instance input/output ratios using least squares "
             "regression for topology %s over a %d second window between %s "
             "and %s", topology_id, (end-start).total_seconds(),
             start.isoformat(), end.isoformat())

    emit_counts: pd.DataFrame = metrics_client.get_emit_counts(
        topology_id, cluster, environ, start, end, **kwargs)

    arrived_tuples: pd.DataFrame = metrics_client.get_tuple_arrivals_at_stmgr(
        topology_id, cluster, environ, start, end, **kwargs)

    execute_counts: pd.DataFrame = metrics_client.get_execute_counts(
        topology_id, cluster, environ, start, end, **kwargs)

    arrived_tuples = arrived_tuples.merge(execute_counts, on=["task", "component", "container", "timestamp"])

    arrived_tuples.drop("execute_count", axis=1, inplace=True)
    # Limit the count DataFrames to only those component with both incoming and
    # outgoing streams
    in_out_comps: List[str] = get_in_out_components(graph_client, topology_id)

    emit_counts = emit_counts[emit_counts["component"].isin(in_out_comps)]
    emit_counts.rename(index=str, columns={"stream": "outgoing_stream"},
                       inplace=True)

    arrived_tuples = arrived_tuples[arrived_tuples["component"]
                                    .isin(in_out_comps)]
    arrived_tuples.rename(index=str, columns={"stream": "incoming_stream"},
                          inplace=True)
    # Re-sample the counts into equal length time buckets and group by task id,
    # time bucket and stream. This aligns the two DataFrames with timestamps of
    # equal length and start point so they can be merged later
    emit_counts_ts: pd.DataFrame = \
        (emit_counts.set_index(["task", "timestamp"])
         .groupby([pd.Grouper(level="task"),
                   pd.Grouper(freq=f"{bucket_length}S", level='timestamp'),
                   "component", "outgoing_stream"])
         ["emit_count"]
         .sum().reset_index())

    arrived_tuples_ts: pd.DataFrame = \
        (arrived_tuples.set_index(["task", "timestamp"])
         .groupby([pd.Grouper(level="task"),
                   pd.Grouper(freq=f"{bucket_length}S", level='timestamp'),
                   "component", "incoming_stream", "source_component"])
         ["num-tuples"]
         .sum().reset_index())

    rows: List[Dict[str, Union[str, float]]] = []

    # Now we loop through each component and munge the data until we have an
    # output total for each output stream for each task on the same row (one
    # row per time bucket) as the input total for each input stream
    component: str
    in_data: pd.DataFrame
    for component, in_data in arrived_tuples_ts.groupby(["component"]):
        in_stream_counts: pd.DataFrame = \
            (in_data.set_index(["task", "timestamp", "incoming_stream",
                                "source_component"])
             ["num-tuples"].unstack(level=["incoming_stream",
                                           "source_component"])
             .reset_index())

        out_stream_counts: pd.DataFrame = \
            emit_counts_ts[emit_counts_ts.component == component]

        merged: pd.DataFrame = out_stream_counts.merge(in_stream_counts,
                                                       on=["task",
                                                           "timestamp"])
        task: int
        out_stream: str
        data: pd.DataFrame
        for (task, out_stream), data in merged.groupby(["task",
                                                        "outgoing_stream"]):

            LOG.debug("Processing instance %d output stream %s", task,
                      out_stream)

            # Get a series of the output counts for this output stream, these
            # are the dependent variables (b) of the least squares regression
            # a x = b
            output_counts: pd.DataFrame = data.emit_count

            # If this instance's component has output stream registered that
            # nothing else subscribes too then the emit count will be zero and
            # we can skip this output stream
            if output_counts.sum() <= 0.0:
                LOG.debug("No emissions from instance %d on stream %s, "
                          "skipping this stream...", task, out_stream)
                continue

            # Get just the input stream counts for each time bucket. This is
            # the coefficients matrix (a) of the least squares regression
            # a x = b
            cols: List[Tuple[str, str]] = data.columns[5:]
            input_counts: pd.DataFrame = data[cols]

            coeffs: List[float]
            coeffs, _, _, _ = np.linalg.lstsq(input_counts, output_counts,
                                              rcond=None)
            i: int
            in_stream: str
            source: str
            for i, (in_stream, source) in enumerate(cols):
                row: Dict[str, Union[str, float]] = {
                    "task": task,
                    "output_stream": out_stream,
                    "input_stream": in_stream,
                    "source_component": source,
                    "coefficient": coeffs[i]}
                rows.append(row)
    result = pd.DataFrame(rows)

    if result.empty:
        raise Exception("lstsq_io_ratios returns an empty dataframe")

    return result
Ejemplo n.º 4
0
def get_spout_state(
        metrics_client: HeronMetricsClient,
        topology_id: str,
        cluster: str,
        environ: str,
        tracker_url: str,
        start: dt.datetime,
        end: dt.datetime,
        metrics_sample_period: float,
        summary_method: str = "median",
        **kwargs: Union[str, int, float]) -> Dict[int, Dict[str, float]]:
    """ Helper script that will fetch the median or mean spout emission rates
    and format them into the dictionary structure expected by the topology
    performance prediction methods.

    Arguments:
        metrics_client (HeronMetricsClient):    The client for the metrics
                                                database.
        topology_id (str):  The topology identification string.
        cluster (str):  The cluster that that the topology is running on.
        environ (str): The environment that the topology is running in.
        tracker_url (str):  The URL for the Heron Tracker API>
        start (datetime):   The UTC datetime for the start of the metrics
                            gathering period.
        end (datetime): The UTC datetime for the start of the metrics
                        gathering period.
        metrics_sample_period (float):  The period that metrics are sampled
                                        into. eg 60 secs (1 min), 300 secs
                                        (5 mins).
        summary_method (str):   The method to use to summerise the emit counts.
                                Either "mean" to "median". Defaults to median.
        **kwargs:   Any additional keyword arguments required by the metrics
                    client.

    Returns:
        Dict[int, Dict[str, float]]:    A dictionary mapping from task ID to a
        dict that maps from output stream name to an emission rate in tuples
        per second.
    """

    LOG.info(
        "Getting spout emission state dictionary for topology %s over a"
        "period of %d seconds from %s to %s", topology_id,
        (end - start).total_seconds(), start.isoformat(), end.isoformat())

    lplan: Dict[str, Any] = tracker.get_logical_plan(tracker_url, cluster,
                                                     environ, topology_id)

    emit_counts: pd.DataFrame = metrics_client.get_emit_counts(
        topology_id, cluster, environ, start, end, **kwargs)

    spout_groups: pd.core.groupby.DataFrameGroupBy = \
        (emit_counts[emit_counts["component"].isin(lplan["spouts"])]
         .groupby(["task", "stream"]))

    if summary_method == "median":

        spout_emits: pd.Series = spout_groups.emit_count.median()

    elif summary_method == "mean":

        spout_emits = spout_groups.emit_count.mean()

    else:
        msg: str = f"Unknown summary method: {summary_method}"
        LOG.error(msg)
        raise RuntimeError(msg)

    output: DefaultDict[int, Dict[str, float]] = defaultdict(dict)

    for (task_id, stream), emit_count in spout_emits.iteritems():

        output[task_id][stream] = emit_count / metrics_sample_period

    return dict(output)