Ejemplo n.º 1
0
def w_1():
	wind_files = sorted(glob.glob("../data/csv_iw/*.csv"))
	lon = latlon_ex.Lon
	lat = latlon_ex.Lat
	lon = np.array(lon)
	lat = np.array(lat)

	dirs = "../result/test_ice_wind/"
	try:
		os.makedirs(dirs)
	except:
		print('directory {} already exists'.format(dirs))

	for item in wind_files:
		data = calc_data.get_1day_iw_data(item)
		save_name = dirs + item[15:21] + ".png"
		print(save_name)
		visualize.plot_map_once(
			data.loc[:, ["iw_u", "iw_v"]],
			data_type="type_wind",
			show=False,
			save_name=save_name,
			vmax=None,
			vmin=None,
			cmap=None)
Ejemplo n.º 2
0
def main_data(start, end, **kwargs):
    span = kwargs["span"]
    region = kwargs["region"]
    get_columns = kwargs["get_columns"]
    accumulate = kwargs["accumulate"]

    date_ax, date_ax_str = get_date_ax(start, end)
    N = len(date_ax_str)
    skipping_date_str = []
    accumulate_data = []
    data = []
    for i, day in enumerate(date_ax_str):
        print("{}/{}: {}".format(i + 1, N, day))
        print("start: {}, end: {}".format(start, end))
        year = day[2:4]
        month = day[4:6]

        #ファイル名の生成
        wind_file_name = "../data/csv_w/ecm" + day[2:] + ".csv"
        ice_file_name = "../data/csv_iw/" + day[2:] + ".csv"
        ic0_145_file_name = "../data/csv_ic0/IC0_" + day + ".csv"
        sit_145_file_name = "../data/csv_sit/SIT_" + day + ".csv"
        coeff_file_name = "../data/csv_A_30/ssc_amsr_ads" + str(year) + str(
            month) + "_" + str(span) + "_fin.csv"
        hermert_file_name = "../data/csv_Helmert_30/Helmert_30_" + str(
            day)[:6] + ".csv"
        # wind10m_file_name = "../data/netcdf4/" + day[2:] + ".csv"
        # t2m_file_name = "../data/netcdf4/" + day[2:] + ".csv"

        skipping_boolean = ("coeff" not in get_columns) and (not all([
            os.path.isfile(wind_file_name),
            os.path.isfile(ice_file_name),
            os.path.isfile(coeff_file_name)
        ]))
        if ("ic0_145" in get_columns):
            skipping_boolean = ("coeff" not in get_columns) and (not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(coeff_file_name),
                os.path.isfile(ic0_145_file_name)
            ]))
        if ("sit_145" in get_columns):
            skipping_boolean = ("coeff" not in get_columns) and (not all([
                os.path.isfile(wind_file_name),
                os.path.isfile(ice_file_name),
                os.path.isfile(coeff_file_name),
                os.path.isfile(sit_145_file_name)
            ]))

        if skipping_boolean == True:
            print("\tSkipping " + day + " file...")
            date_ax_str.remove(day)
            bb = date(int(day[:4]), int(day[4:6]), int(day[6:]))
            date_ax.remove(bb)
            skipping_date_str.append(day)
            continue

        data = pd.DataFrame({"data_idx": np.array(ocean_grid_145).ravel()})
        if "ex_1" in get_columns:
            print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name))
            tmp = calc_data.get_w_regression_data(wind_file_name,
                                                  ice_file_name,
                                                  coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "ex_2" in get_columns:
            print("\t{}\n\t{}\n\t{}\n\t{}".format(wind_file_name,
                                                  ice_file_name,
                                                  hermert_file_name))
            tmp = calc_data.get_w_hermert_data(wind_file_name, ice_file_name,
                                               hermert_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "w" in get_columns:
            print("\t{}".format(wind_file_name))
            tmp = calc_data.get_1day_w_data(wind_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "iw" in get_columns:
            print("\t{}".format(ice_file_name))
            tmp = calc_data.get_1day_iw_data(ice_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "ic0_145" in get_columns:
            print("\t{}".format(ic0_145_file_name))
            tmp = calc_data.get_1day_ic0_data(ic0_145_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "sit_145" in get_columns:
            print("\t{}".format(sit_145_file_name))
            tmp = calc_data.get_1day_sit_data(sit_145_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "coeff" in get_columns:
            print("\t{}".format(coeff_file_name))
            tmp = calc_data.get_1month_coeff_data(coeff_file_name)
            data = pd.concat([data, tmp], axis=1)
        if "hermert" in get_columns:
            print("\t{}".format(hermert_file_name))
            tmp = calc_data.get_1month_hermert_data(hermert_file_name)
            data = pd.concat([data, tmp], axis=1)
        """
		if "w10m" in get_columns:
			tmp = calc_data.get_1day_w10m_data(wind10m_file_name)
			data = pd.concat([data, tmp], axis=1)
		if "t2m" in get_columns:
			tmp = calc_data.get_1day_t2m_data(t2m_file_name)
			data = pd.concat([data, tmp], axis=1)
		"""

        data = calc_data.get_masked_region_data(data, region)

        if ("coeff" in get_columns):
            print("\tSelected only coeff data. Getting out of the loop...")
            continue

        if accumulate == True:
            data_1 = data.drop("data_idx", axis=1)
            print("\t{}".format(data_1.columns))
            accumulate_data.append(np.array(data_1))

    if accumulate == True:
        print("accumulate: True\tdata type: array")
        return date_ax, date_ax_str, skipping_date_str, accumulate_data
    else:
        print("accumulate: False\tdata type: DataFrame")
        return date_ax, date_ax_str, skipping_date_str, data
Ejemplo n.º 3
0
def test_w_iw_by_year():
    dirs_1 = "../result_h/test/w_iw_by_year/"
    dirs_2 = "../result_h/test/w_iw_by_year_without_ocean/"
    if not os.path.exists(dirs_1):
        os.makedirs(dirs_1)
    if not os.path.exists(dirs_2):
        os.makedirs(dirs_2)

    y_list = [
        "03", "04", "05", "06", "07", "08", "09", "10", "13", "14", "15", "16"
    ]
    month_list = [
        "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12"
    ]

    for month in month_list:
        print("************" + month + "************")
        helmert_30_30_fname = "../data/csv_Helmert_both_30/Helmert_both_30_2003" + month + ".csv"
        data_30 = pd.read_csv(helmert_30_30_fname)
        #area_16_index = np.array(data_30.loc[data_30.area_label==16, :].index)
        area_16_index = np.array(data_30[(data_30.area_label.isin(
            list(range(17))))].dropna().index).tolist()
        plot_grids = random.sample(area_16_index, 15)
        print(plot_grids)

        gw_list = []
        iw_list = []
        iw_ocean_list = []
        for year in y_list:
            helmert_file_name = "../data/csv_Helmert_both_30/Helmert_both_30_20" + year + month + ".csv"
            gw_file_name = "../data/csv_w/ecm" + year + month + "15.csv"
            iw_file_name = "../data/csv_iw/" + year + month + "15.csv"

            helmert_data = calc_data.get_1month_helmert_data(helmert_file_name)
            gw_data = calc_data.get_1day_w_data(gw_file_name)
            iw_data = calc_data.get_1day_iw_data(iw_file_name)

            gw_speed = np.array(gw_data.loc[plot_grids, "w_speed"])
            iw_speed = np.array(iw_data.loc[plot_grids, "iw_speed"])
            iw_ocean_u = np.array(iw_data.loc[plot_grids, "iw_u"] -
                                  helmert_data.loc[plot_grids, "ocean_u"])
            iw_ocean_v = np.array(iw_data.loc[plot_grids, "iw_v"] -
                                  helmert_data.loc[plot_grids, "ocean_v"])
            iw_speed_ocean = np.sqrt(iw_ocean_u**2 + iw_ocean_v**2)

            gw_list.append(gw_speed)
            iw_list.append(iw_speed)
            iw_ocean_list.append(iw_speed_ocean)

        gw_array = np.array(gw_list)
        iw_array = np.array(iw_list)
        iw_ocean_array = np.array(iw_ocean_list)

        for i in range(len(plot_grids)):
            gw = gw_array[:, i]
            iw = iw_array[:, i]
            iw_ocean = iw_ocean_array[:, i]
            save_name_1 = dirs_1 + month + "15_grid_" + str(
                plot_grids[i]) + ".png"
            save_name_2 = dirs_2 + month + "15_grid_" + str(
                plot_grids[i]) + ".png"
            try:
                sns.set_style("darkgrid")
                sns.jointplot(x=gw, y=iw, kind="reg")
                plt.savefig(save_name_1)
                plt.close()
                sns.set_style("darkgrid")
                sns.jointplot(x=gw, y=iw_ocean, kind="reg")
                plt.savefig(save_name_2)
                plt.close()
            except:
                continue