def alp_lik(alp_trans, cdat, dparams, r, lw, gn): '''objective function for minimizing alp''' #get w pre_w = cdat['exptot'] / float(1000) w = np.log(pre_w) #untransform alp alp = untrans(alp_trans) #update preference parameters cdat = calc_gv.get_pp(cdat, alp, r, lw, gn) #Update observation types cdat = new_ot.ot_step(cdat, dparams, alp, r, lw, gn) #update preference parameters cdat = calc_gv.get_pp(cdat, alp, r, lw, gn) #get likelihood lik = new_ot.olik(cdat, dparams, w, gn) lik_sum = -lik.sum() print(alp) print('{0:.6f}'.format(lik_sum)) return lik_sum
def obs_type_lik_loop(data_input): '''loops through each observation type to get likelihoods''' (k, cdat, dparams, alp, r, lw, w, gn) = data_input ot_try = pd.Series([k + 1] * len(cdat)) cdat['ot'] = ot_try # new observation type cdat = calc_gv.get_pp(cdat, alp, r, lw, gn) # update parameters out = olik(cdat, dparams, w, gn) + cdat['vin' + str(k + 1)] #add logged vindex return out
def est_loop(cdat, boot, runs, gn, prepend, dp_file, calc_t): '''main estimation loop''' cdat_orig = deepcopy(cdat) #for use with bootstrap for k in range(runs): #Get sample from cdat for bootstrap if boot: randlist = np.random.randint(0,len(cdat),len(cdat)) cdat = deepcopy(cdat_orig.iloc[randlist].reset_index()) #Timestamp timestamp = datetime.datetime\ .fromtimestamp(time.time())\ .strftime('%Y_%m_%d_%H_%M_%S') #Get parameters alp, r, lw = get_pars() dparams = pd.read_csv(dp_file) alp = 0.0329 old_alp = 100 while (old_alp - alp) ** 2 > 1e-12: # Print information old_alp = deepcopy(alp) print(alp) print('params') #Infer preference parameters cdat = calc_gv.get_pp(cdat, alp, r, lw, gn) print('prefs') #Calculate distribution parameters dparams = upd_pd.pref_dist(cdat, gn, dparams, calc_t) print('ob_types') #Update observation types cdat = new_ot.ot_step(cdat, dparams, alp, r, lw, gn) print('params') #Infer preference parameters cdat = calc_gv.get_pp(cdat, alp, r, lw, gn) print('prefs') #Calculate distribution parameters dparams = upd_pd.pref_dist(cdat, gn, dparams, calc_t) print('alp') #Update alpha and partial lik alp, lik = upd_alp.alp_step(cdat, alp, r, lw, dparams, gn) print(alp) print(old_alp) #get the correct folder if boot: folder = 'boot' else: folder = 'results' cdat.to_csv(prepend + folder + '/cdat' + timestamp + '.csv') pd.DataFrame(dparams).T.to_csv(prepend + folder + '/params' + timestamp + '.csv') f = open(prepend + folder + '/alp' + timestamp + '.csv', 'w') f.write('{:.6f}'.format(alp)) f.close()