def test_inflate(self):
        st = SingleTransform([0, 0, 0, 0, 0, 0])
        st.inflate(reshape(matrix([1, 0, 0, 0, 0, 0], float), (-1, 1)))
        expected = numpy.matrix(
            [[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], float)

        print ""
        print st.transform

        self.assertAlmostEqual(numpy.linalg.norm(st.transform - expected), 0.0,
                               6)
    def test_inflate(self):
        st = SingleTransform([0, 0, 0, 0, 0, 0])
        st.inflate( reshape( matrix([1, 0, 0, 0, 0, 0], float), (-1,1) ))
        expected = numpy.matrix( [[ 1, 0, 0, 1],
                                  [ 0, 1, 0, 0],
                                  [ 0, 0, 1, 0],
                                  [ 0, 0, 0, 1]], float )

        print ""
        print st.transform

        self.assertAlmostEqual(numpy.linalg.norm(st.transform-expected), 0.0, 6)
 def test_deflate(self):
     st = SingleTransform([0, 0, 0, 0, 0, 0])
     p = reshape(matrix([1, 0, 0, 0, 0, 0], float), (-1, 1))
     st.inflate(p)
     result = st.deflate()
     self.assertAlmostEqual(numpy.linalg.norm(p - result), 0.0, 6)
 def test_deflate(self):
     st = SingleTransform([0, 0, 0, 0, 0, 0])
     p = reshape( matrix([1, 0, 0, 0, 0, 0], float), (-1,1) )
     st.inflate(p)
     result = st.deflate()
     self.assertAlmostEqual(numpy.linalg.norm(p-result), 0.0, 6)