Ejemplo n.º 1
0
    def __init__(self, use_gpu=False):
        actions = data_utils.define_actions(FLAGS.action)
        rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
        train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
            actions, FLAGS.data_dir, FLAGS.camera_frame, rcams,
            FLAGS.predict_14)

        self.train_set_2d = train_set_2d
        self.test_set_2d = test_set_2d
        self.data_mean_2d = data_mean_2d
        self.data_std_2d = data_std_2d
        self.dim_to_use_2d = dim_to_use_2d
        self.dim_to_ignore_2d = dim_to_ignore_2d
        self.train_set_3d = train_set_3d
        self.test_set_3d = test_set_3d
        self.data_mean_3d = data_mean_3d
        self.data_std_3d = data_std_3d
        self.dim_to_use_3d = dim_to_use_3d
        self.dim_to_ignore_3d = dim_to_ignore_3d

        device_count = {"GPU": 1} if use_gpu else {"GPU": 0}
        self.persistent_sess = tf.Session(config=tf.ConfigProto(
            device_count=device_count, allow_soft_placement=True))
        with self.persistent_sess.as_default():
            self.graph = tf.get_default_graph()
            self.model = create_model(self.persistent_sess, actions,
                                      batch_size)
Ejemplo n.º 2
0
def read_2d_predictions(actions, data_dir):

    rcams, vcams = cameras.load_cameras('cameras.h5', [1, 5, 6, 7, 8, 9, 11],
                                        n_interpolations=0)
    train_set = load_stacked_hourglass(data_dir, [1, 5, 6, 7, 8], actions)
    test_set = load_stacked_hourglass(data_dir, [9, 11], actions)
    #test_set  = load_stacked_hourglass( data_dir, [9], actions)

    complete_train = copy.deepcopy(np.vstack(train_set.values()))
    data_mean, data_std, dim_to_ignore, dim_to_use = normalization_stats(
        complete_train, dim=2)
    #print("DIM TO IGNORE",dim_to_ignore)
    train_set = normalize_data(train_set, data_mean, data_std, dim_to_use,
                               actions, 2)
    test_set = normalize_data(test_set, data_mean, data_std, dim_to_use,
                              actions, 2)

    return train_set, test_set, data_mean, data_std, dim_to_ignore, dim_to_use
Ejemplo n.º 3
0
def normalize_batch(frames):
  actions = data_utils.define_actions(FLAGS.action)
  SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]

  # Get training data stats
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
  train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
    actions, FLAGS.data_dir)
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

  mu = np.mean(frames, axis=0)[dim_to_use_2d]
  stddev = np.std(frames, axis=0)[dim_to_use_2d]

  # Normalize input
  enc_in = np.divide(frames[:, dim_to_use_2d] - np.tile(mu, (frames.shape[0], 1)), np.tile(stddev, (frames.shape[0], 1)))

  return enc_in, data_mean_3d, data_std_3d, dim_to_ignore_3d
Ejemplo n.º 4
0
def evaluate(current_step=0):
    """Evaluate on all the test set"""
    if FLAGS.load <= 0:
        raise (ValueError, "Must give an iteration to read parameters from")

    actions = define_actions(FLAGS.action)
    rcams, vcams = cameras.load_cameras('cameras.h5', [1, 5, 6, 7, 8, 9, 11])
    # Load and normalize all the data
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions, offsets_train, offsets_test = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, vcams)

    if (FLAGS.use_sh):
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, _, _ = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)

    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, _, _ = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams, vcams)

    print("done reading and normalizing data.")

    # Limit TF to take a fraction of the GPU memory
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1)
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    isTraining = False
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                          device_count=device_count)) as sess:
        # === Create the model ===
        model = create_model(sess, isTraining, dim_to_use_3d, FLAGS.batch_size,
                             data_mean_3d, data_std_3d, dim_to_ignore_3d)
        print("Model created")
        cum_err = 0
        print("{0:=^12} {1:=^6}".format("Action",
                                        "mm"))  # line of 30 equal signs
        for action in actions:
            tot_act_err = 0
            print("{0:<12} ".format(action), end="")
            #print(test_set_2d_gt.keys())
            action_test_set_2d = get_action_subset(test_set_2d, action)
            action_test_set_3d = get_action_subset(test_set_3d, action)
            action_test_set_2d_gt = []
            for key2d in action_test_set_2d.keys():
                #print(key2d)
                (subj, b, fname) = key2d

                # keys should be the same if 3d is in camera coordinates
                key3d = key2d if FLAGS.camera_frame else (
                    subj, b, '{0}.h5'.format(fname.split('.')[0]))
                key3d = (subj, b,
                         fname[:-3]) if (fname.endswith('-sh')
                                         and FLAGS.camera_frame) else key3d
                #key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
                if fname.endswith('-sh'):
                    fname = fname[:-3]
                #print("###NAME OF THE FILE", fname[:-3])
                enc_in = {}
                dec_out = {}
                enc_in[key2d] = test_set_2d[key2d]
                dec_out[key3d] = test_set_3d[key3d]
                pose_2d_gt_list = []

                encoder_inputs, decoder_outputs = model.get_all_batches(
                    enc_in, dec_out, FLAGS.camera_frame, training=False)
                act_err, _, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                    dim_to_ignore_3d, current_step, encoder_inputs,
                    decoder_outputs)
                tot_act_err = tot_act_err + act_err

            print("{0:>6.2f}".format(tot_act_err /
                                     len(action_test_set_2d.keys())))
            cum_err = cum_err + tot_act_err / len(action_test_set_2d.keys())

        print("{0:<12} {1:>6.2f}".format("Average",
                                         cum_err / float(len(actions))))
        print("{0:=^19}".format(''))
        return cum_err / float(len(actions))
Ejemplo n.º 5
0
    camera['fx'] = f[0]
    camera['fy'] = f[1]
    camera['cx'] = c[0]
    camera['cy'] = c[1]
    camera['k'] = k
    camera['p'] = p
    camera['name'] = name
    return camera


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('dataset_root_dir')
    args = parser.parse_args()

    cams = cameras.load_cameras(
        bpath=os.path.join(args.dataset_root_dir, 'cameras.h5'))

    train_dirs, val_dirs = find_train_val_dirs(args.dataset_root_dir)
    train_val_datasets = [train_dirs, val_dirs]
    dbs = []
    video_count = 0
    for dataset in train_val_datasets:
        db = []
        for video in dataset:
            if np.mod(video_count, 1) == 0:
                print('Process {}: {}'.format(video_count, video))

            data = load_db(args.dataset_root_dir, video, video_count, cams)
            db.extend(data)
            video_count += 1
        dbs.append(db)
Ejemplo n.º 6
0
def sample():
  """Get samples from a model and visualize them"""

  actions = data_utils.define_actions( FLAGS.action )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess:
    # === Create the model ===
    print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    batch_size = 128
    model = create_model(sess, actions, batch_size)
    print("Model loaded")

    for key2d in test_set_2d.keys():

      (subj, b, fname) = key2d
      print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) )

      # keys should be the same if 3d is in camera coordinates
      key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
      key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d

      enc_in  = test_set_2d[ key2d ]
      n2d, _ = enc_in.shape
      dec_out = test_set_3d[ key3d ]
      n3d, _ = dec_out.shape
      assert n2d == n3d

      # Split into about-same-size batches
      enc_in   = np.array_split( enc_in,  n2d // batch_size )
      dec_out  = np.array_split( dec_out, n3d // batch_size )
      all_poses_3d = []

      for bidx in range( len(enc_in) ):

        # Dropout probability 0 (keep probability 1) for sampling
        dp = 1.0
        _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False)

        # denormalize
        enc_in[bidx]  = data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d )
        dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d )
        poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
        all_poses_3d.append( poses3d )

      # Put all the poses together
      enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] )

      # Convert back to world coordinates
      if FLAGS.camera_frame:
        N_CAMERAS = 4
        N_JOINTS_H36M = 32

        # Add global position back
        dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] )

        # Load the appropriate camera
        subj, _, sname = key3d

        cname = sname.split('.')[1] # <-- camera name
        scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject
        scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used
        the_cam  = scams[(subj, scam_idx+1)] # <-- the camera used
        R, T, f, c, k, p, name = the_cam
        assert name == cname

        def cam2world_centered(data_3d_camframe):
          data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
          data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3))
          # subtract root translation
          return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) )

        # Apply inverse rotation and translation
        dec_out = cam2world_centered(dec_out)
        poses3d = cam2world_centered(poses3d)

  # Grab a random batch to visualize
  enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
  idx = np.random.permutation( enc_in.shape[0] )
  enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

  # Visualize random samples
  import matplotlib.gridspec as gridspec

  # 1080p	= 1,920 x 1,080
  fig = plt.figure( figsize=(19.2, 10.8) )

  gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns
  gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes.
  plt.axis('off')

  subplot_idx, exidx = 1, 1
  nsamples = 15
  for i in np.arange( nsamples ):

    # Plot 2d pose
    ax1 = plt.subplot(gs1[subplot_idx-1])
    p2d = enc_in[exidx,:]
    viz.show2Dpose( p2d, ax1 )
    ax1.invert_yaxis()

    # Plot 3d gt
    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    p3d = dec_out[exidx,:]
    viz.show3Dpose( p3d, ax2 )

    # Plot 3d predictions
    ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d')
    p3d = poses3d[exidx,:]
    viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" )

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

  plt.show()
def test():
    """ Evaluate on test set """
    actions = data_utils.define_actions(FLAGS.action)

    number_of_actions = len(actions)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data.")

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        model = create_model(sess, actions, FLAGS.batch_size)
        model.train_writer.add_graph(sess.graph)
        print("Model created")

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
        previous_losses = []

        step_time, loss = 0, 0
        current_epoch = 0
        log_every_n_batches = 100

        for _ in xrange(1):
            # === Testing after this epoch ===
            isTraining = False
            if FLAGS.evaluateActionWise:
                print("{0:=^12} {1:=^6}".format(
                    "Action", "mm"))  # line of 30 equal signs
                cum_err = 0
                for action in actions:

                    print("{0:<12} ".format(action), end="")
                    # Get 2d and 3d testing data for this action
                    action_test_set_2d = get_action_subset(test_set_2d, action)
                    action_test_set_3d = get_action_subset(test_set_3d, action)
                    encoder_inputs, decoder_outputs, _ = data_utils.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False,\
                        n_context=FLAGS.n_context, new_dim=False, batch_size=FLAGS.batch_size)

                    act_err, _, step_time, loss = evaluate_batches(
                        sess,
                        model,
                        data_mean_3d,
                        data_std_3d,
                        dim_to_use_3d,
                        dim_to_ignore_3d,
                        data_mean_2d,
                        data_std_2d,
                        dim_to_use_2d,
                        dim_to_ignore_2d,
                        current_step,
                        encoder_inputs,
                        decoder_outputs,
                        test_set_2d=action_test_set_2d)
                    cum_err = cum_err + act_err

                    print("{0:>6.2f}".format(act_err))
                # summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
                # model.test_writer.add_summary( summaries, current_step )
                print("{0:<12} {1:>6.2f}".format("Average", cum_err /
                                                 float(len(actions))))
                print("{0:=^19}".format(''))

            else:
                pass

                # n_joints = 17 if not(FLAGS.predict_14) else 14
                # encoder_inputs, decoder_outputs, _ = data_utils.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame,\
                #     training=False, n_context=FLAGS.n_context, new_dim=False, batch_size=FLAGS.batch_size)
                #
                # total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
                #   data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
                #   data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
                #   current_step, encoder_inputs, decoder_outputs, current_epoch )
                #
                # print("=============================\n"
                #       "Step-time (ms):      %.4f\n"
                #       "Val loss avg:        %.4f\n"
                #       "Val error avg (mm):  %.2f\n"
                #       "=============================" % ( 1000*step_time, loss, total_err ))
                #
                # for i in range(n_joints):
                #   # 6 spaces, right-aligned, 5 decimal places
                #   print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
                # print("=============================")

                # Log the error to tensorboard
                # summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
                # model.test_writer.add_summary( summaries, current_step )

            # Save the model
            # print( "Saving the model... ", end="" )
            # start_time = time.time()
            # model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
            # print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

            # Reset global time and loss
            step_time, loss = 0, 0
            sys.stdout.flush()
def main(_):
    #ABS_DIR = os.path.abspath('.')
    posf = open(pose_output_dir, 'w')
    #smoothedf = open(ABS_DIR + '/tmp/smoothed.txt', 'w')

    smoothed = read_openpose_json()
    plt.figure(2)
    smooth_curves_plot = show_anim_curves(smoothed, plt)
    pngName = 'gif_output/smooth_plot.png'
    smooth_curves_plot.savefig(pngName)
    logger.info('writing gif_output/smooth_plot.png')

    if FLAGS.interpolation:
        logger.info("start interpolation")

        framerange = len( smoothed.keys() )
        joint_rows = 36
        array = np.concatenate(list(smoothed.values()))
        array_reshaped = np.reshape(array, (framerange, joint_rows) )
        print(array_reshaped[0,:])

        arm = [4,5,6,7,8,9,10,11]
        multiplier = FLAGS.multiplier
        multiplier_inv = 1/multiplier

        out_array = np.array([])
        for row in range(joint_rows):
            x = []
            for frame in range(framerange):
                x.append( array_reshaped[frame, row] )

            frame = range( framerange )
            frame_resampled = np.arange(0, framerange, multiplier)
            spl = UnivariateSpline(frame, x, k=3)
            #relative smooth factor based on jnt anim curve
            min_x, max_x = min(x), max(x)
            smooth_fac = max_x - min_x
            if row in arm:
                smooth_resamp = 1
            else:
                smooth_resamp = 75
            smooth_fac = smooth_fac * smooth_resamp
            spl.set_smoothing_factor( float(smooth_fac) )
            xnew = spl(frame_resampled)

            out_array = np.append(out_array, xnew)

        logger.info("done interpolating. reshaping {0} frames,  please wait!!".format(framerange))

        a = np.array([])
        for frame in range( int( framerange * multiplier_inv ) ):
            jnt_array = []
            for jnt in range(joint_rows):
                jnt_array.append( out_array[ jnt * int(framerange * multiplier_inv) + frame] )
            a = np.append(a, jnt_array)

        a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows))
        out_array = a

        interpolate_smoothed = {}
        for frame in range( int(framerange * multiplier_inv) ):
            interpolate_smoothed[frame] = list( out_array[frame] )

        plt.figure(3)
        smoothed = interpolate_smoothed
        interpolate_curves_plot = show_anim_curves(smoothed, plt)
        pngName = 'gif_output/interpolate_{0}.png'.format(smooth_resamp)
        interpolate_curves_plot.savefig(pngName)
        logger.info('writing gif_output/interpolate_plot.png')

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    device_count = {"GPU": 1}
    png_lib = []
    with tf.Session(config=tf.ConfigProto(
            device_count=device_count,
            allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        iter_range = len(smoothed.keys())
        for n, (frame, xy) in enumerate(smoothed.items()):
            logger.info("calc frame {0}/{1}".format(frame, iter_range))
            # map list into np array
            joints_array = np.zeros((1, 36))
            joints_array[0] = [0 for i in range(36)]
            for o in range(len(joints_array[0])):
                #feed array with xy array
                joints_array[0][o] = xy[o]
            _data = joints_array[0]
            #smoothedf.write(' '.join(map(str, _data)))
            #smoothedf.write("\n")
            # mapping all body parts or 3d-pose-baseline format
            for i in range(len(order)):
                for j in range(2):
                    # create encoder input
                    enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
            for j in range(2):
                # Hip
                enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2
                # Neck/Nose
                enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2
                # Thorax
                enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j]

            # set spine
            spine_x = enc_in[0][24]
            spine_y = enc_in[0][25]

            enc_in = enc_in[:, dim_to_use_2d]
            mu = data_mean_2d[dim_to_use_2d]
            stddev = data_std_2d[dim_to_use_2d]
            enc_in = np.divide((enc_in - mu), stddev)

            dp = 1.0
            dec_out = np.zeros((1, 48))
            dec_out[0] = [0 for i in range(48)]
            _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False)
            all_poses_3d = []
            enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d)
            gs1 = gridspec.GridSpec(1, 1)
            gs1.update(wspace=-0.00, hspace=0.05)  # set the spacing between axes.
            plt.axis('off')
            all_poses_3d.append( poses3d )
            enc_in, poses3d = map( np.vstack, [enc_in, all_poses_3d] )
            subplot_idx, exidx = 1, 1
            _max = 0
            _min = 10000

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    tmp = poses3d[i][j * 3 + 2]
                    poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                    poses3d[i][j * 3 + 1] = tmp
                    if poses3d[i][j * 3 + 2] > _max:
                        _max = poses3d[i][j * 3 + 2]
                    if poses3d[i][j * 3 + 2] < _min:
                        _min = poses3d[i][j * 3 + 2]

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min
                    poses3d[i][j * 3] += (spine_x - 630)
                    poses3d[i][j * 3 + 2] += (500 - spine_y)

            # Plot 3d predictions
            ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
            ax.view_init(18, -70)
            if np.min(poses3d) < -1000:
                try:
                    poses3d = before_pose
                except:
                    pass

            p3d = poses3d
            #viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71")

            # pngName = 'png/pose_frame_{0}.png'.format(str(frame).zfill(12))
            # plt.savefig(pngName)
            # if FLAGS.write_gif:
            #     png_lib.append(imageio.imread(pngName))
            before_pose = poses3d
            write_pos_data(poses3d, ax, posf)
        posf.close()
Ejemplo n.º 9
0
import cameras

from pykalman import KalmanFilter
from sklearn.metrics import mean_squared_error 
import matplotlib.pyplot as plt
from torch.utils.data import Dataset

# Feel free to use more cells if necessary.

# Define actions
actions = data_utils.define_actions("All")

# Load camera parameters
SUBJECT_IDS = [1,5,6,7,8,9,11]
cameras_path = '/content/gdrive/My Drive/CSE527-HW6-Fall19/h36m/cameras.h5'
rcams = cameras.load_cameras(cameras_path, SUBJECT_IDS)

# Load data
data_dir = '/content/gdrive/My Drive/CSE527-HW6-Fall19/h36m'
camera_frame = True
predict_14 = False
# Load 3d data and load (or create) 2d projections
train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, data_dir, camera_frame, rcams, predict_14 )

# Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
use_sh = False
if use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, data_dir)
else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, data_dir, rcams )
Ejemplo n.º 10
0
    def __init__(self, config, mode):
        self.logger = logging.getLogger(self.__class__.__name__)

        assert mode in ["train", "test"], "Invalid mode: {}".format(mode)

        self.config = config
        self.mode = mode

        subject_ids = [1, 5, 6, 7, 8, 9, 11]
        rcams = cameras.load_cameras(config["cameras_path"], subject_ids)
        self.rcams = rcams

        if os.path.isfile("data/train.h5") and os.path.isfile("data/test.h5"):
            with h5py.File("data/train.h5", "r") as f:
                train_set_3d = {}
                for k in f["data_3d"]:
                    d = f["data_3d"][k]
                    key = d.attrs["subject"], d.attrs["action"], d.attrs[
                        "filename"]
                    train_set_3d[key] = d[:]
                train_set_2d_gt = {}
                for k in f["data_2d_gt"]:
                    d = f["data_2d_gt"][k]
                    key = d.attrs["subject"], d.attrs["action"], d.attrs[
                        "filename"]
                    train_set_2d_gt[key] = d[:]

            with h5py.File("data/test.h5", "r") as f:
                test_set_3d = {}
                for k in f["data_3d"]:
                    d = f["data_3d"][k]
                    key = d.attrs["subject"], d.attrs["action"], d.attrs[
                        "filename"]
                    test_set_3d[key] = d[:]
                test_set_2d_gt = {}
                for k in f["data_2d_gt"]:
                    d = f["data_2d_gt"][k]
                    key = d.attrs["subject"], d.attrs["action"], d.attrs[
                        "filename"]
                    test_set_2d_gt[key] = d[:]

            self.logger.info(
                "{} 3d train files, {} 3d test files are loaded.".format(
                    len(train_set_3d), len(test_set_3d)))
            self.logger.info(
                "{} 2d GT train files, {} 2d GT test files are loaded.".format(
                    len(train_set_2d_gt), len(test_set_2d_gt)))
        else:
            raise Exception("Dataset file is missing!")

        f_cpn = np.load("data/data_cpn.npz")
        data_2d_cpn = f_cpn["positions_2d"].item()

        self.n_frames = config["n_frames"]
        self.n_joints = config["n_joints"]
        self.n_bases = config["n_bases"]
        self.window_slide = config["window_slide"]
        self.bases = config["bases"]

        dims_17 = np.where(np.array([x != '' for x in H36M_NAMES]))[0]

        assert self.n_joints == 17, self.n_joints
        dim_2d = np.sort(np.hstack([dims_17 * 2 + i for i in range(2)]))
        dim_3d = np.sort(np.hstack([dims_17 * 3 + i for i in range(3)]))

        self.left_right_symmetry_2d = np.array(
            [0, 4, 5, 6, 1, 2, 3, 7, 8, 9, 10, 14, 15, 16, 11, 12, 13])
        self.left_right_symmetry_3d = np.array(
            [3, 4, 5, 0, 1, 2, 6, 7, 8, 9, 13, 14, 15, 10, 11, 12])

        dim_cpn_to_gt = np.array(
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])

        self.data_2d_gt = {}
        self.data_2d_cpn = {}
        self.data_3d = {}
        self.indices = []

        if mode == "train":
            data_3d = train_set_3d
            data_2d_gt = train_set_2d_gt
        else:
            data_3d = test_set_3d
            data_2d_gt = test_set_2d_gt

        # cut videos into short clips of fixed length
        self.logger.info("Loading sequence...")
        for idx, k in enumerate(sorted(data_3d)):
            if k[0] == 11 and k[2].split(".")[0] == "Directions":
                # one video is missing
                # drop all four videos instead of only one camera's view
                self.data_3d[k] = None
                continue

            assert k in data_2d_gt, k
            assert data_3d[k].shape[0] == data_2d_gt[k].shape[0]

            cam_name = k[2].split(".")[1]
            cam_id = cameras.cam_name_to_id[cam_name]

            d2_cpn = data_2d_cpn["S{}".format(
                k[0])][k[2].split(".")[0]][cam_id - 1][:data_3d[k].shape[0],
                                                       dim_cpn_to_gt]
            d2_cpn = d2_cpn.reshape([d2_cpn.shape[0], self.n_joints * 2])
            self.data_2d_cpn[k] = d2_cpn

            d2_gt = data_2d_gt[k][:, dim_2d]
            d2_gt = d2_gt.reshape([d2_gt.shape[0], self.n_joints, 2])
            d2_gt = d2_gt.reshape([d2_gt.shape[0], self.n_joints * 2])
            self.data_2d_gt[k] = d2_gt

            d3 = data_3d[k][:, dim_3d]
            d3 = d3.reshape([d3.shape[0], self.n_joints, 3])
            # align root to origin
            d3 = d3 - d3[:, :1, :]
            d3 = d3.reshape([d3.shape[0], self.n_joints * 3])
            # remove zero root joint
            d3 = d3[:, 3:]
            self.data_3d[k] = d3

            N = data_3d[k].shape[0]
            n = 0
            while n + self.n_frames <= N:
                self.indices.append((idx, ) + k + (n, self.n_frames))

                n += self.window_slide

        self.n_data = len(self.indices)
        self.logger.info("{} data loaded for {} dataset".format(
            self.n_data, mode))

        # computing statistics for data normalization
        if "stats" in config:
            assert mode == "test", mode
            stats_data = config["stats"]
            self.logger.info("Loading stats...")
            self.mean_2d, self.std_2d, self.mean_3d, self.std_3d = stats_data
        else:
            assert mode == "train", mode

            self.mean_2d = np.mean(np.vstack(self.data_2d_gt.values()),
                                   axis=0)  # (2J,)
            self.std_2d = np.std(np.vstack(self.data_2d_gt.values()),
                                 axis=0)  # (2J,)
            self.mean_3d = np.mean(np.vstack(self.data_3d.values()),
                                   axis=0)  # (3J,)
            self.std_3d = np.std(np.vstack(self.data_3d.values()),
                                 axis=0)  # (3J,)

            self.logger.info("mean 2d: {}".format(self.mean_2d))
            self.logger.info("std 2d: {}".format(self.std_2d))
            self.logger.info("mean 3d: {}".format(self.mean_3d))
            self.logger.info("std 3d: {}".format(self.std_3d))

            stats_data = self.mean_2d, self.std_2d, self.mean_3d, self.std_3d
            config["stats"] = stats_data
            self.logger.info("Saving stats...")
def main(_):
    done = []

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    device_count = {"GPU": 0}
    png_lib = []
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        rows = 0
        filename = "Realtimedata.xlsx"
        workbook = xlsxwriter.Workbook(filename)
        worksheet = workbook.add_worksheet()
        while True:
            key = cv2.waitKey(1) & 0xFF
            #logger.info("start reading data")
            # check for other file types
            list_of_files = glob.iglob("{0}/*".format(
                openpose_output_dir))  # You may use iglob in Python3
            latest_file = ""
            try:
                latest_file = max(list_of_files, key=os.path.getctime)
            except ValueError:
                #empthy dir
                pass
            if not latest_file:
                continue
            try:
                _file = file_name = latest_file
                print(latest_file)
                if not os.path.isfile(_file):
                    raise Exception("No file found!!, {0}".format(_file))
                data = json.load(open(_file))
                #take first person
                _data = data["people"][0]["pose_keypoints_2d"]
                xy = []
                #ignore confidence score
                """for o in range(0,len(_data),3):
                    xy.append(_data[o])
                    xy.append(_data[o+1])"""
                if len(_data) >= 53:
                    #openpose incl. confidence score
                    #ignore confidence score
                    for o in range(0, len(_data), 3):
                        xy.append(_data[o])
                        xy.append(_data[o + 1])
                else:
                    #tf-pose-estimation
                    xy = _data

                frame_indx = re.findall("(\d+)", file_name)
                frame = int(frame_indx[0])

                joints_array = np.zeros((1, 36))
                joints_array[0] = [0 for i in range(36)]
                for o in range(len(joints_array[0])):
                    #feed array with xy array
                    joints_array[0][o] = xy[o]
                _data = joints_array[0]
                # mapping all body parts or 3d pose offline format
                for i in range(len(order)):
                    for j in range(2):
                        # create encoder input
                        enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
                for j in range(2):
                    # Hip
                    enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] +
                                            enc_in[0][6 * 2 + j]) / 2
                    # Neck/Nose
                    enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] +
                                             enc_in[0][12 * 2 + j]) / 2
                    # Thorax
                    enc_in[0][
                        13 * 2 +
                        j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j]

                # set spine
                spine_x = enc_in[0][24]
                spine_y = enc_in[0][25]

                enc_in = enc_in[:, dim_to_use_2d]
                mu = data_mean_2d[dim_to_use_2d]
                stddev = data_std_2d[dim_to_use_2d]
                enc_in = np.divide((enc_in - mu), stddev)

                dp = 1.0
                dec_out = np.zeros((1, 48))
                dec_out[0] = [0 for i in range(48)]
                _, _, poses3d = model.step(sess,
                                           enc_in,
                                           dec_out,
                                           dp,
                                           isTraining=False)
                all_poses_3d = []
                enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d,
                                                    data_std_2d,
                                                    dim_to_ignore_2d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                gs1 = gridspec.GridSpec(1, 1)
                gs1.update(wspace=-0.00,
                           hspace=0.05)  # set the spacing between axes.
                plt.axis('off')
                all_poses_3d.append(poses3d)
                enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])
                subplot_idx, exidx = 1, 1
                _max = 0
                _min = 10000

                for i in range(poses3d.shape[0]):
                    for j in range(32):
                        tmp = poses3d[i][j * 3 + 2]
                        poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                        poses3d[i][j * 3 + 1] = tmp
                        if poses3d[i][j * 3 + 2] > _max:
                            _max = poses3d[i][j * 3 + 2]
                        if poses3d[i][j * 3 + 2] < _min:
                            _min = poses3d[i][j * 3 + 2]

                for i in range(poses3d.shape[0]):
                    for j in range(32):
                        poses3d[i][j * 3 +
                                   2] = _max - poses3d[i][j * 3 + 2] + _min
                        poses3d[i][j * 3] += (spine_x - 630)
                        poses3d[i][j * 3 + 2] += (500 - spine_y)

                for val in min_vex:
                    # f.write(str(val) + ' ' + str(p_vex[i]) + '');
                    # gait_list1.append({'IX': "%i" % val[0],
                    #                     'IY': "%i" % val[1],
                    #                     'Ix': "%i" % p_vex[i][0],
                    #                     'Iy': "%i" % p_vex[i][1],
                    #                     'Iz': "%i" % p_vex[i][2],
                    # })
                    gait_list1.append(val[0])
                    gait_list1.append(val[1])
                    gait_list1.append(p_vex[i][0])
                    gait_list1.append(p_vex[i][1])
                    gait_list1.append(p_vex[i][2])

                    points.append(
                        " %f %f %f %d %d %d 0\n" %
                        (p_vex[i][0], p_vex[i][1], p_vex[i][2], 0, 255, 0))
                    x.append(p_vex[i][0])
                    y.append(p_vex[i][1])
                    z.append(p_vex[i][2])
                    i = i + 1

                # Plot 3d predictions
                ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
                ax.view_init(18, -70)
                logger.debug(np.min(poses3d))
                if np.min(poses3d) < -1000 and frame != 0:
                    poses3d = before_pose

                p3d = poses3d
                '''gait_list1 = []
                #enter file path below
                with open('key_joint_info.csv', 'w', newline='') as myfile:
                    gait_list2.append(gait_list1)
                    data1 = pd.DataFrame(gait_list2)
                    wr = csv.writer(myfile, dialect = 'key_joint_info.csv' )
                    wr.writerow(p3d)
                    wb.save(key_joint_info.csv)'''

                viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71")
                col = 0
                for i in p3d[0]:
                    worksheet.write(rows, col, i)
                    col += 1
                    #.append(i)
                rows += 1
                before_pose = poses3d
                pngName = '{}_keypoints.png'.format(str(frame))
                plt.savefig(pngName)

                #plt.show()
                img = cv2.imread(pngName, 0)
                rect_cpy = img.copy()
                cv2.imshow('3d-pose-realtime', rect_cpy)
                done.append(file_name)
                if key == ord('q'):
                    break
            except Exception as e:
                print(e)

        sess.close()
def test():
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    actions = data_utils.define_actions(FLAGS.action)
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    # Load 3d data and load (or create) 2d projections
    """
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils_org.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_org.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_org.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )
  """
    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions, augmented3d, train_set_3d_for_noisy, data_mean_3d_test, data_std_3d_test = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14,
        FLAGS.augment_all, FLAGS.augment_rot, FLAGS.augment_flip,
        FLAGS.augment_trans, FLAGS.add_noise, FLAGS.add_kinematics)
    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections

    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d, train_set_2d_for_noisy, data_mean_2d_test, data_std_2d_test = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams, augmented3d)
    print("done reading and normalizing data.")

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          gpu_options=gpu_options)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = FLAGS.batch_size
        model = create_model(sess, actions, batch_size)
        print("Model loaded")

        if FLAGS.evaluateActionWise:

            print("{0:=^12} {1:=^6}".format("Action",
                                            "mm"))  # line of 30 equal signs

            cum_err = 0
            for action in actions:
                print("{0:<12} ".format(action), end="")
                # Get 2d and 3d testing data for this action
                action_test_set_2d = get_action_subset(test_set_2d, action)
                action_test_set_3d = get_action_subset(test_set_3d, action)
                encoder_inputs, decoder_outputs = model.get_all_batches(
                    action_test_set_2d,
                    action_test_set_3d,
                    FLAGS.camera_frame,
                    training=False)

                act_err, _, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d_test, data_std_3d_test,
                    dim_to_use_3d, dim_to_ignore_3d, data_mean_2d_test,
                    data_std_2d_test, dim_to_use_2d, dim_to_ignore_2d, 0,
                    encoder_inputs, decoder_outputs)
                cum_err = cum_err + act_err

                print("{0:>6.2f}".format(act_err))

            summaries = sess.run(
                model.err_mm_summary,
                {model.err_mm: float(cum_err / float(len(actions)))})
            model.test_writer.add_summary(summaries, current_step)
            print("{0:<12} {1:>6.2f}".format("Average",
                                             cum_err / float(len(actions))))
            print("{0:=^19}".format(''))
        else:
            n_joints = 17 if not (FLAGS.predict_14) else 14
            encoder_inputs, decoder_outputs = model.get_all_batches(
                test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

            total_err, joint_err, step_time, loss = evaluate_batches(
                sess, model, data_mean_3d_test, data_std_3d_test,
                dim_to_use_3d, dim_to_ignore_3d, data_mean_2d_test,
                data_std_2d_test, dim_to_use_2d, dim_to_ignore_2d, 0,
                encoder_inputs, decoder_outputs, FLAGS.epochs)

            print("=============================\n"
                  "Step-time (ms):      %.4f\n"
                  "Val loss avg:        %.4f\n"
                  "Val error avg (mm):  %.2f\n"
                  "=============================" %
                  (1000 * step_time, loss, total_err))

            for i in range(n_joints):
                # 6 spaces, right-aligned, 5 decimal places
                print("Error in joint {0:02d} (mm): {1:>5.2f}".format(
                    i + 1, joint_err[i]))
            print("=============================")
Ejemplo n.º 13
0
def video():
    """Get samples from a model and visualize them"""

    actions_all = data_utils.define_actions("All")

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions_all, FLAGS.data_dir, FLAGS.camera_frame, rcams,
        FLAGS.predict_14)
    train_set_3d = data_utils.remove_first_frame(train_set_3d)
    test_set_3d = data_utils.remove_first_frame(test_set_3d)
    train_root_positions = data_utils.remove_first_frame(train_root_positions)
    test_root_positions = data_utils.remove_first_frame(test_root_positions)
    print("Finished Read 3D Data")

    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions_all, FLAGS.data_dir)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction(
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d,
        dim_to_use_2d)
    print("Finished Read 2D Data")
    print(test_set_2d)

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = FLAGS.batch_size  #Intial code is 64*2
        model = predict_3dpose_biframe.create_model(sess, actions_all,
                                                    batch_size)
        print("Model loaded")

        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d
            # if subj != 11:
            #   continue
            # #if fname != 'Discussion 1.55011271.h5-sh':
            if (fname, subj) not in [("Greeting 1.60457274.h5-sh", 9),
                                     ("Photo.58860488.h5-sh", 9),
                                     ("Directions 1.54138969.h5-sh", 9),
                                     ("Purchases 1.55011271.h5-sh", 9),
                                     ("Greeting.54138969.h5-sh", 11),
                                     ("Discussion 1.55011271.h5-sh", 11),
                                     ("Eating 1.55011271.h5-sh", 11),
                                     ("Purchases 1.55011271.h5-sh", 11)]:
                continue
            print("Subject: {}, action: {}, fname: {}".format(subj, b, fname))

            enc_in = test_set_2d[key2d]
            n2d, _ = enc_in.shape
            print("Model Input has size : ", enc_in.shape)

            # Split into about-same-size batches
            enc_in = np.array_split(enc_in, n2d // batch_size)
            all_poses_3d = []

            for bidx in range(len(enc_in)):

                # Dropout probability 0 (keep probability 1) for sampling
                dp = 1.0
                anything = np.zeros((enc_in[bidx].shape[0], 48))
                _, _, poses3d = model.step(sess,
                                           enc_in[bidx],
                                           anything,
                                           dp,
                                           isTraining=False)

                # denormalize
                enc_in[bidx] = data_utils.unNormalizeData(
                    enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                all_poses_3d.append(poses3d)

            # Put all the poses together
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])

            # Convert back to world coordinates
            if FLAGS.camera_frame:
                N_CAMERAS = 4
                N_JOINTS_H36M = 32

                cname = fname.split(
                    '.'
                )[1]  #camera_mapping[fname.split('.')[0][-1]] # <-- camera name "55011271"
                scams = {(subj, c + 1): rcams[(subj, c + 1)]
                         for c in range(N_CAMERAS)}  # cams of this subject
                scam_idx = [
                    scams[(subj, c + 1)][-1] for c in range(N_CAMERAS)
                ].index(cname)  # index of camera used
                the_cam = scams[(subj, scam_idx + 1)]  # <-- the camera used
                R, T, f, c, k, p, name = the_cam
                assert name == cname

                def cam2world_centered(data_3d_camframe):
                    data_3d_worldframe = cameras.camera_to_world_frame(
                        data_3d_camframe.reshape((-1, 3)), R, T)
                    data_3d_worldframe = data_3d_worldframe.reshape(
                        (-1, N_JOINTS_H36M * 3))
                    # subtract root translation
                    return data_3d_worldframe - np.tile(
                        data_3d_worldframe[:, :3], (1, N_JOINTS_H36M))

                # Apply inverse rotation and translation
                poses3d = cam2world_centered(poses3d)

            # Grab a random batch to visualize
            enc_in, poses3d = map(np.vstack, [enc_in, poses3d])

            #1080p	= 1,920 x 1,080
            fig = plt.figure(figsize=(7, 7))
            gs1 = gridspec.GridSpec(1, 1)
            plt.axis('on')

            # dir_2d_poses = FLAGS.data_dir + 'S' + str(subj) + '/VideoBiframe/' + fname + '/2Destimate/'
            # if not os.path.isdir(dir_2d_poses):
            #   os.makedirs(dir_2d_poses)

            dir_3d_estimates = FLAGS.data_dir + 'S' + str(
                subj) + '/VideoBiframe/' + fname + '/3Destimate/'
            if not os.path.isdir(dir_3d_estimates):
                os.makedirs(dir_3d_estimates)
Ejemplo n.º 14
0
def main(_):
    # 出力用日付
    now_str = "{0:%Y%m%d_%H%M%S}".format(datetime.datetime.now())

    logger.debug("FLAGS.person_idx={0}".format(FLAGS.person_idx))

    # ディレクトリ構成が変わったので、JSON出力と同階層に出力(2/9)
    if FLAGS.output is None:
        subdir = openpose_output_dir
    else:
        subdir = FLAGS.output

    os.makedirs(subdir, exist_ok=True)

    frame3d_dir = "{0}/frame3d".format(subdir)
    if os.path.exists(frame3d_dir):
        # 既にディレクトリがある場合、一旦削除
        shutil.rmtree(frame3d_dir)
    os.makedirs(frame3d_dir)

    #関節位置情報ファイル
    posf = open(subdir + '/pos.txt', 'w')

    #正規化済みOpenpose位置情報ファイル
    smoothedf = open(subdir + '/smoothed.txt', 'w')

    #開始フレームインデックスファイル
    start_frame_f = open(subdir + '/start_frame.txt', 'w')

    idx = FLAGS.person_idx - 1
    start_frame_index, smoothed = openpose_utils.read_openpose_json(
        "{0}/json".format(openpose_output_dir), idx, FLAGS.verbose == 3)

    # 開始フレームインデックスを保存
    start_frame_f.write(str(start_frame_index))
    start_frame_f.close()

    logger.info("reading and smoothing done. start feeding 3d-pose-baseline")
    logger.debug(smoothed)
    plt.figure(2)
    smooth_curves_plot = show_anim_curves(smoothed, plt)
    pngName = subdir + '/smooth_plot.png'
    smooth_curves_plot.savefig(pngName)

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    # before_pose = None
    device_count = {"GPU": 1}
    png_lib = []
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)

        # 入力画像のスケール調整のため、NeckからHipまでの距離を測定
        length_neck2hip_mean = get_length_neck2hip_mean(smoothed)

        # 2D、3D結果の保存用リスト
        poses3d_list = []
        poses2d_list = []

        # 2dと3dのスケール比率計算のためのリスト
        length_2d_list = []
        length_3d_list = []

        for n, (frame, xy) in enumerate(smoothed.items()):
            if frame % 200 == 0:
                logger.info("calc idx {0}, frame {1}".format(idx, frame))
            #if frame % 300 == 0:
            #    print(frame)

            # map list into np array
            joints_array = np.zeros((1, 36))
            joints_array[0] = [0 for i in range(36)]
            for o in range(len(joints_array[0])):
                #feed array with xy array
                joints_array[0][o] = xy[o]
            _data = joints_array[0]

            smoothedf.write(' '.join(map(str, _data)))
            smoothedf.write("\n")

            # mapping all body parts or 3d-pose-baseline format
            for i in range(len(order)):
                for j in range(2):
                    # create encoder input
                    enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
            for j in range(2):
                # Hip
                enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] +
                                        enc_in[0][6 * 2 + j]) / 2
                # Thorax
                # 3dPoseBaselineのThoraxの位置は、OpenPoseのNeckの位置より少し上のため調整する
                enc_in[0][13 * 2 +
                          j] = 1.1 * enc_in[0][13 * 2 +
                                               j] - 0.1 * enc_in[0][0 * 2 + j]
                # Neck/Nose
                enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] +
                                         enc_in[0][13 * 2 + j]) / 2
                # Spine
                enc_in[0][12 * 2 + j] = (enc_in[0][0 * 2 + j] +
                                         enc_in[0][13 * 2 + j]) / 2

            # set spine
            # spine_x = enc_in[0][24]
            # spine_y = enc_in[0][25]

            # logger.debug("enc_in - 1")
            # logger.debug(enc_in)

            poses2d = enc_in

            # 入力データの拡大
            # neckからHipまでが110ピクセル程度になるように入力を拡大する
            # (教師データとスケールが大きく異なると精度が落ちるため)
            input_scaling_factor = 110 / length_neck2hip_mean
            enc_in = enc_in * input_scaling_factor

            enc_in = enc_in[:, dim_to_use_2d]
            mu = data_mean_2d[dim_to_use_2d]
            stddev = data_std_2d[dim_to_use_2d]
            enc_in = np.divide((enc_in - mu), stddev)

            dp = 1.0
            dec_out = np.zeros((1, 48))
            dec_out[0] = [0 for i in range(48)]
            _, _, poses3d = model.step(sess,
                                       enc_in,
                                       dec_out,
                                       dp,
                                       isTraining=False)
            all_poses_3d = []
            enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d,
                                                data_std_2d, dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                 data_std_3d, dim_to_ignore_3d)
            gs1 = gridspec.GridSpec(1, 1)
            gs1.update(wspace=-0.00,
                       hspace=0.05)  # set the spacing between axes.
            plt.axis('off')
            all_poses_3d.append(poses3d)
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])
            subplot_idx, exidx = 1, 1

            poses3d_list.append(poses3d[0])
            poses2d_list.append(poses2d[0])

            length_2d_list.append(sum_length_xy(poses2d[0], 2))
            length_3d_list.append(sum_length_xy(poses3d[0], 3))

        # OpenPose出力の(x, y)とBaseline出力のzから、3次元の位置を計算する

        # OpenPose出力値とBaseline出力値のスケール比率
        # 骨格の長さの合計の比較することで、比率を推定
        # 前後の91フレームで移動平均をとることで、結果を安定化する
        move_ave_length_2d = calc_move_average(length_2d_list, 91)
        move_ave_length_3d = calc_move_average(length_3d_list, 91)
        move_ave_length_2d[move_ave_length_2d == 0] = 1  # error防止
        xy_scale = move_ave_length_3d / move_ave_length_2d

        # 以下の4つは仮の値で計算。多少違っていても、精度に影響はないと思う
        center_2d_x, center_2d_y = camera_center(
            openpose_output_dir)  #動画の中心座標(動画の解像度の半分)
        logger.info("center_2d_x {0}".format(center_2d_x))
        z_distance = 4000  # カメラから体までの距離(mm) 遠近の影響計算で使用
        camera_incline = 0  # カメラの水平方向に対する下への傾き(度)

        teacher_camera_incline = 13  # 教師データ(Human3.6M)のカメラの傾き(下向きに平均13度)

        for frame, (poses3d,
                    poses2d) in enumerate(zip(poses3d_list, poses2d_list)):

            # 誤差を減らすため、OpenPose出力の(x, y)と3dPoseBaseline出力のzから、3次元の位置を計算する

            poses3d_op_xy = np.zeros(96)
            for i in [0, 1, 2, 3, 6, 7, 8, 13, 15, 17, 18, 19, 25, 26, 27]:
                # Hipとの差分
                dy = poses3d[i * 3 + 1] - poses3d[0 * 3 + 1]
                dz = poses3d[i * 3 + 2] - poses3d[0 * 3 + 2]
                # 教師データのカメラ傾きを補正
                dz = dz - dy * math.tan(
                    math.radians(teacher_camera_incline - camera_incline))
                # 遠近によるx,yの拡大率
                z_ratio = (z_distance + dz) / z_distance
                # x, yはOpenposeの値から計算
                poses3d_op_xy[i *
                              3] = (poses2d[i * 2] -
                                    center_2d_x) * xy_scale[frame] * z_ratio
                poses3d_op_xy[i * 3 +
                              1] = (poses2d[i * 2 + 1] -
                                    center_2d_y) * xy_scale[frame] * z_ratio
                # zはBaselineの値から計算
                poses3d_op_xy[i * 3 + 2] = dz

            # 12(Spine)、14(Neck/Nose)、15(Head)はOpenPoseの出力にないため、baseline(poses3d)から計算する
            for i in [12, 14, 15]:

                # 13(Thorax)は認識されることが多いため基準とする
                # 差分
                dx = poses3d[i * 3] - poses3d[13 * 3]
                dy = poses3d[i * 3 + 1] - poses3d[13 * 3 + 1]
                dz = poses3d[i * 3 + 2] - poses3d[13 * 3 + 2]
                # 教師データのカメラ傾きを補正
                dz = dz - dy * math.tan(
                    math.radians(teacher_camera_incline - camera_incline))
                # 13(Thorax)からの差分でx, y ,zを求める
                poses3d_op_xy[i * 3] = poses3d_op_xy[13 * 3] + dx
                poses3d_op_xy[i * 3 + 1] = poses3d_op_xy[13 * 3 + 1] + dy
                poses3d_op_xy[i * 3 + 2] = poses3d_op_xy[13 * 3 + 2] + dz

            # MMD上で少し顎を引くための処理
            poses3d_op_xy[15 * 3] += 0.5 * (poses3d_op_xy[14 * 3] -
                                            poses3d_op_xy[13 * 3])
            poses3d_op_xy[15 * 3 + 1] += 0.5 * (poses3d_op_xy[14 * 3 + 1] -
                                                poses3d_op_xy[13 * 3 + 1])
            poses3d_op_xy[15 * 3 + 2] += 0.5 * (poses3d_op_xy[14 * 3 + 2] -
                                                poses3d_op_xy[13 * 3 + 2])

            poses3d_list[frame] = poses3d_op_xy

        logger.info("calc ground y")
        # 最も高さが低い足の部位のYを取得(この座標系ではY値が大きい方が低い)
        foot_joint_no = [1, 2, 3, 6, 7, 8]
        max_pos = []
        for frame, poses3d in enumerate(poses3d_list):
            max_pos.append(np.max([poses3d[i * 3 + 1] for i in foot_joint_no]))

        # 地面についている部位の位置(通常は足首)をY軸の0になるように移動する
        for frame, poses3d in enumerate(poses3d_list):
            # 120フレーム分の位置を取得
            max_pos_slice = max_pos[int(np.max([0, frame - 60])):frame + 60]
            # 半分以上のフレームでは着地していると仮定し、メディアンを着地時の足の位置とする
            ankle_pos = np.median(max_pos_slice)

            poses3d_ground = np.zeros(96)
            for i in range(len(data_utils.H36M_NAMES)):
                poses3d_ground[i * 3] = poses3d[i * 3]
                poses3d_ground[i * 3 + 1] = poses3d[i * 3 + 1] - ankle_pos
                poses3d_ground[i * 3 + 2] = poses3d[i * 3 + 2]

            poses3d_list[frame] = poses3d_ground

        for frame, (poses3d,
                    poses2d) in enumerate(zip(poses3d_list, poses2d_list)):
            if frame % 200 == 0:
                logger.info("output frame {}".format(frame))

            # max = 0
            # min = 10000

            # logger.debug("enc_in - 2")
            # logger.debug(enc_in)

            for j in range(32):
                tmp = poses3d[j * 3 + 2]
                poses3d[j * 3 + 2] = -poses3d[j * 3 + 1]
                poses3d[j * 3 + 1] = tmp
            #         if poses3d[i][j * 3 + 2] > max:
            #             max = poses3d[i][j * 3 + 2]
            #         if poses3d[i][j * 3 + 2] < min:
            #             min = poses3d[i][j * 3 + 2]

            # for i in range(poses3d.shape[0]):
            #     for j in range(32):
            #         poses3d[i][j * 3 + 2] = max - poses3d[i][j * 3 + 2] + min
            #         poses3d[i][j * 3] += (spine_x - 630)
            #         poses3d[i][j * 3 + 2] += (500 - spine_y)

            # Plot 3d predictions
            ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
            ax.view_init(18, 280)
            # logger.debug(np.min(poses3d))
            # if np.min(poses3d) < -1000 and before_pose is not None:
            #    poses3d = before_pose

            p3d = poses3d
            # logger.debug("poses3d")
            # logger.debug(poses3d)
            if frame == 0:
                first_xyz = [0, 0, 0]
                first_xyz[0], first_xyz[1], first_xyz[2] = p3d[0], p3d[1], p3d[
                    2]

            if level[FLAGS.verbose] <= logging.INFO:
                viz.show3Dpose(p3d,
                               ax,
                               lcolor="#9b59b6",
                               rcolor="#2ecc71",
                               add_labels=True,
                               root_xyz=first_xyz)

                # 各フレームの単一視点からのはINFO時のみ
                pngName = frame3d_dir + '/tmp_{0:012d}.png'.format(frame)
                plt.savefig(pngName)
                png_lib.append(imageio.imread(pngName))
                # before_pose = poses3d

            # 各フレームの角度別出力はデバッグ時のみ
            if level[FLAGS.verbose] == logging.DEBUG:

                for azim in [0, 45, 90, 135, 180, 225, 270, 315, 360]:
                    ax2 = plt.subplot(gs1[subplot_idx - 1], projection='3d')
                    ax2.view_init(18, azim)
                    viz.show3Dpose(p3d,
                                   ax2,
                                   lcolor="#FF0000",
                                   rcolor="#0000FF",
                                   add_labels=True,
                                   root_xyz=first_xyz)

                    pngName2 = frame3d_dir + '/tmp_{0:012d}_{1:03d}.png'.format(
                        frame, azim)
                    plt.savefig(pngName2)

            #関節位置情報の出力
            write_pos_data(poses3d, ax, posf)

        posf.close()
        smoothedf.close()

        # INFO時は、アニメーションGIF生成
        if level[FLAGS.verbose] <= logging.INFO:
            logger.info(
                "creating Gif {0}/movie_smoothing.gif, please Wait!".format(
                    subdir))
            imageio.mimsave('{0}/movie_smoothing.gif'.format(subdir),
                            png_lib,
                            fps=FLAGS.gif_fps)

        logger.info("Done!".format(pngName))
Ejemplo n.º 15
0
def sample():
  """Get samples from a model and visualize them"""

  actions = data_utils.define_actions( FLAGS.action )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess:
    # === Create the model ===
    print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    batch_size = 128
    model = create_model(sess, actions, batch_size)
    print("Model loaded")

    for key2d in test_set_2d.keys():

      (subj, b, fname) = key2d
      print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) )

      # keys should be the same if 3d is in camera coordinates
      key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
      key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d

      enc_in  = test_set_2d[ key2d ]
      n2d, _ = enc_in.shape
      dec_out = test_set_3d[ key3d ]
      n3d, _ = dec_out.shape
      assert n2d == n3d

      # Split into about-same-size batches
      enc_in   = np.array_split( enc_in,  n2d // batch_size )
      dec_out  = np.array_split( dec_out, n3d // batch_size )
      all_poses_3d = []

      for bidx in range( len(enc_in) ):

        # Dropout probability 0 (keep probability 1) for sampling
        dp = 1.0
        _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False)

        # denormalize
        enc_in[bidx]  = data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d )
        dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d )
        poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
        all_poses_3d.append( poses3d )

      # Put all the poses together
      enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] )

      # Convert back to world coordinates
      if FLAGS.camera_frame:
        N_CAMERAS = 4
        N_JOINTS_H36M = 32

        # Add global position back
        dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] )

        # Load the appropriate camera
        subj, _, sname = key3d

        cname = sname.split('.')[1] # <-- camera name
        scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject
        scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used
        the_cam  = scams[(subj, scam_idx+1)] # <-- the camera used
        R, T, f, c, k, p, name = the_cam
        assert name == cname

        def cam2world_centered(data_3d_camframe):
          data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
          data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3))
          # subtract root translation
          return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) )

        # Apply inverse rotation and translation
        dec_out = cam2world_centered(dec_out)
        poses3d = cam2world_centered(poses3d)

  # Grab a random batch to visualize
  enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
  idx = np.random.permutation( enc_in.shape[0] )
  enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

  # Visualize random samples
  import matplotlib.gridspec as gridspec

  # 1080p	= 1,920 x 1,080
  fig = plt.figure( figsize=(19.2, 10.8) )

  gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns
  gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes.
  plt.axis('off')

  subplot_idx, exidx = 1, 1
  nsamples = 15
  for i in np.arange( nsamples ):

    # Plot 2d pose
    ax1 = plt.subplot(gs1[subplot_idx-1])
    p2d = enc_in[exidx,:]
    viz.show2Dpose( p2d, ax1 )
    ax1.invert_yaxis()

    # Plot 3d gt
    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    p3d = dec_out[exidx,:]
    viz.show3Dpose( p3d, ax2 )

    # Plot 3d predictions
    ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d')
    p3d = poses3d[exidx,:]
    viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" )

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

  plt.show()
Ejemplo n.º 16
0
def train():
  """Train a linear model for 3d pose estimation"""

  actions = data_utils.define_actions( FLAGS.action )

  number_of_actions = len( actions )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  # Avoid using the GPU if requested
  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto(
    device_count=device_count,
    allow_soft_placement=True )) as sess:

    # === Create the model ===
    print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    model = create_model( sess, actions, FLAGS.batch_size )
    model.train_writer.add_graph( sess.graph )
    print("Model created")

    #=== This is the training loop ===
    step_time, loss, val_loss = 0.0, 0.0, 0.0
    current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
    previous_losses = []

    step_time, loss = 0, 0
    current_epoch = 0
    log_every_n_batches = 100

    for _ in xrange( FLAGS.epochs ):
      current_epoch = current_epoch + 1

      # === Load training batches for one epoch ===
      encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True )
      nbatches = len( encoder_inputs )
      print("There are {0} train batches".format( nbatches ))
      start_time, loss = time.time(), 0.

      # === Loop through all the training batches ===
      for i in range( nbatches ):

        if (i+1) % log_every_n_batches == 0:
          # Print progress every log_every_n_batches batches
          print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" )

        enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
        step_loss, loss_summary, lr_summary, _ =  model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True )

        if (i+1) % log_every_n_batches == 0:
          # Log and print progress every log_every_n_batches batches
          model.train_writer.add_summary( loss_summary, current_step )
          model.train_writer.add_summary( lr_summary, current_step )
          step_time = (time.time() - start_time)
          start_time = time.time()
          print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) )

        loss += step_loss
        current_step += 1
        # === end looping through training batches ===

      loss = loss / nbatches
      print("=============================\n"
            "Global step:         %d\n"
            "Learning rate:       %.2e\n"
            "Train loss avg:      %.4f\n"
            "=============================" % (model.global_step.eval(),
            model.learning_rate.eval(), loss) )
      # === End training for an epoch ===

      # === Testing after this epoch ===
      isTraining = False

      if FLAGS.evaluateActionWise:

        print("{0:=^12} {1:=^6}".format("Action", "mm")) # line of 30 equal signs

        cum_err = 0
        for action in actions:

          print("{0:<12} ".format(action), end="")
          # Get 2d and 3d testing data for this action
          action_test_set_2d = get_action_subset( test_set_2d, action )
          action_test_set_3d = get_action_subset( test_set_3d, action )
          encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False)

          act_err, _, step_time, loss = evaluate_batches( sess, model,
            data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
            data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
            current_step, encoder_inputs, decoder_outputs )
          cum_err = cum_err + act_err

          print("{0:>6.2f}".format(act_err))

        summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
        model.test_writer.add_summary( summaries, current_step )
        print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) )))
        print("{0:=^19}".format(''))

      else:

        n_joints = 17 if not(FLAGS.predict_14) else 14
        encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

        total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
          data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
          data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
          current_step, encoder_inputs, decoder_outputs, current_epoch )

        print("=============================\n"
              "Step-time (ms):      %.4f\n"
              "Val loss avg:        %.4f\n"
              "Val error avg (mm):  %.2f\n"
              "=============================" % ( 1000*step_time, loss, total_err ))

        for i in range(n_joints):
          # 6 spaces, right-aligned, 5 decimal places
          print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
        print("=============================")

        # Log the error to tensorboard
        summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
        model.test_writer.add_summary( summaries, current_step )

      # Save the model
      print( "Saving the model... ", end="" )
      start_time = time.time()
      model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
      print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

      # Reset global time and loss
      step_time, loss = 0, 0

      sys.stdout.flush()
def test():

    actions = data_utils.define_actions(FLAGS.action)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        model = create_model(sess, actions, FLAGS.batch_size)
        model.train_writer.add_graph(sess.graph)

        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1

        if FLAGS.evaluateActionWise:

            logger.info("{0:=^12} {1:=^6}".format(
                "Action", "mm"))  # line of 30 equal signs

            cum_err = 0  # select the mixture model which has mininum error
            for action in actions:

                # Get 2d and 3d testing data for this action
                action_test_set_2d = get_action_subset(test_set_2d, action)
                action_test_set_3d = get_action_subset(test_set_3d, action)
                encoder_inputs, decoder_outputs, repro_info = model.get_all_batches(
                    action_test_set_2d,
                    action_test_set_3d,
                    FLAGS.camera_frame,
                    training=False)

                act_err, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                    dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d,
                    dim_to_ignore_2d, current_step, encoder_inputs,
                    decoder_outputs)

                cum_err = cum_err + act_err
                logger.info('{0:<12} {1:>6.2f}'.format(action, act_err))

            summaries = sess.run(
                model.err_mm_summary,
                {model.err_mm: float(cum_err / float(len(actions)))})
            model.test_writer.add_summary(summaries, current_step)

            logger.info('{0:<12} {1:>6.2f}'.format(
                "Average", cum_err / float(len(actions))))

            logger.info('{0:=^19}'.format(''))
def main(_):
    # 出力用日付
    now_str = "{0:%Y%m%d_%H%M%S}".format(datetime.datetime.now())

    logger.debug("FLAGS.person_idx={0}".format(FLAGS.person_idx))

    # 日付+indexディレクトリ作成
    subdir = '{0}/{1}_3d_{2}_idx{3:02d}'.format(
        os.path.dirname(openpose_output_dir),
        os.path.basename(openpose_output_dir), now_str, FLAGS.person_idx)
    os.makedirs(subdir)

    frame3d_dir = "{0}/frame3d".format(subdir)
    os.makedirs(frame3d_dir)

    #関節位置情報ファイル
    posf = open(subdir + '/pos.txt', 'w')

    #正規化済みOpenpose位置情報ファイル
    smoothedf = open(subdir + '/smoothed.txt', 'w')

    idx = FLAGS.person_idx - 1
    smoothed = openpose_utils.read_openpose_json(openpose_output_dir, idx,
                                                 level[FLAGS.verbose] == 3)
    logger.info("reading and smoothing done. start feeding 3d-pose-baseline")
    logger.debug(smoothed)
    plt.figure(2)
    smooth_curves_plot = show_anim_curves(smoothed, plt)
    pngName = subdir + '/smooth_plot.png'
    smooth_curves_plot.savefig(pngName)

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    before_pose = None
    device_count = {"GPU": 1}
    png_lib = []
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        for n, (frame, xy) in enumerate(smoothed.items()):
            logger.info("calc idx {0}, frame {1}".format(idx, frame))

            # map list into np array
            joints_array = np.zeros((1, 36))
            joints_array[0] = [0 for i in range(36)]
            for o in range(len(joints_array[0])):
                #feed array with xy array
                joints_array[0][o] = xy[o]
            _data = joints_array[0]

            smoothedf.write(' '.join(map(str, _data)))
            smoothedf.write("\n")

            # mapping all body parts or 3d-pose-baseline format
            for i in range(len(order)):
                for j in range(2):
                    # create encoder input
                    enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
            for j in range(2):
                # Hip
                enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] +
                                        enc_in[0][6 * 2 + j]) / 2
                # Neck/Nose
                enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] +
                                         enc_in[0][12 * 2 + j]) / 2
                # Thorax
                enc_in[0][13 * 2 +
                          j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 +
                                                                     j]

            # set spine
            spine_x = enc_in[0][24]
            spine_y = enc_in[0][25]

            # logger.debug("enc_in - 1")
            # logger.debug(enc_in)

            enc_in = enc_in[:, dim_to_use_2d]
            mu = data_mean_2d[dim_to_use_2d]
            stddev = data_std_2d[dim_to_use_2d]
            enc_in = np.divide((enc_in - mu), stddev)

            dp = 1.0
            dec_out = np.zeros((1, 48))
            dec_out[0] = [0 for i in range(48)]
            _, _, poses3d = model.step(sess,
                                       enc_in,
                                       dec_out,
                                       dp,
                                       isTraining=False)
            all_poses_3d = []
            enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d,
                                                data_std_2d, dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                 data_std_3d, dim_to_ignore_3d)
            gs1 = gridspec.GridSpec(1, 1)
            gs1.update(wspace=-0.00,
                       hspace=0.05)  # set the spacing between axes.
            plt.axis('off')
            all_poses_3d.append(poses3d)
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])
            subplot_idx, exidx = 1, 1
            max = 0
            min = 10000

            # logger.debug("enc_in - 2")
            # logger.debug(enc_in)

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    tmp = poses3d[i][j * 3 + 2]
                    poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                    poses3d[i][j * 3 + 1] = tmp
                    if poses3d[i][j * 3 + 2] > max:
                        max = poses3d[i][j * 3 + 2]
                    if poses3d[i][j * 3 + 2] < min:
                        min = poses3d[i][j * 3 + 2]

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    poses3d[i][j * 3 + 2] = max - poses3d[i][j * 3 + 2] + min
                    poses3d[i][j * 3] += (spine_x - 630)
                    poses3d[i][j * 3 + 2] += (500 - spine_y)

            # Plot 3d predictions
            ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
            ax.view_init(18, 280)
            logger.debug(np.min(poses3d))
            if np.min(poses3d) < -1000 and before_pose is not None:
                poses3d = before_pose

            p3d = poses3d
            # logger.debug("poses3d")
            # logger.debug(poses3d)

            if level[FLAGS.verbose] == logging.INFO:
                viz.show3Dpose(p3d,
                               ax,
                               lcolor="#9b59b6",
                               rcolor="#2ecc71",
                               add_labels=True)

                # 各フレームの単一視点からのはINFO時のみ
                pngName = frame3d_dir + '/tmp_{0:012d}.png'.format(frame)
                plt.savefig(pngName)
                png_lib.append(imageio.imread(pngName))
                before_pose = poses3d

            # 各フレームの角度別出力はデバッグ時のみ
            if level[FLAGS.verbose] == logging.DEBUG:

                for azim in [0, 45, 90, 135, 180, 225, 270, 315, 360]:
                    ax2 = plt.subplot(gs1[subplot_idx - 1], projection='3d')
                    ax2.view_init(18, azim)
                    viz.show3Dpose(p3d,
                                   ax2,
                                   lcolor="#FF0000",
                                   rcolor="#0000FF",
                                   add_labels=True)

                    pngName2 = frame3d_dir + '/tmp_{0:012d}_{1:03d}.png'.format(
                        frame, azim)
                    plt.savefig(pngName2)

            #関節位置情報の出力
            write_pos_data(poses3d, ax, posf)

        posf.close()

        # INFO時は、アニメーションGIF生成
        if level[FLAGS.verbose] == logging.INFO:
            logger.info(
                "creating Gif {0}/movie_smoothing.gif, please Wait!".format(
                    subdir))
            imageio.mimsave('{0}/movie_smoothing.gif'.format(subdir),
                            png_lib,
                            fps=FLAGS.gif_fps)

        logger.info("Done!".format(pngName))
def sample():
    """Get samples from a model and visualize them"""
    path = '{}/samples_sh'.format(FLAGS.train_dir)
    if not os.path.exists(path):
        os.makedirs(path)
    actions = data_utils.define_actions(FLAGS.action)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    n_joints = 17 if not (FLAGS.predict_14) else 14

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d, _ = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===

        batch_size = 128
        model = create_model(sess, actions, batch_size)
        print("Model loaded")

        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d

            # choose SittingDown action to visualize
            if b == 'SittingDown':
                print("Subject: {}, action: {}, fname: {}".format(
                    subj, b, fname))

                # keys should be the same if 3d is in camera coordinates
                key3d = key2d if FLAGS.camera_frame else (
                    subj, b, '{0}.h5'.format(fname.split('.')[0]))
                key3d = (subj, b, fname[:-3]) if (
                    fname.endswith('-sh')) and FLAGS.camera_frame else key3d

                enc_in = test_set_2d[key2d]
                n2d, _ = enc_in.shape
                dec_out = test_set_3d[key3d]
                n3d, _ = dec_out.shape
                assert n2d == n3d

                # Split into about-same-size batches

                enc_in = np.array_split(enc_in, n2d // batch_size)
                dec_out = np.array_split(dec_out, n3d // batch_size)

                # store all pose hypotheses in a list
                pose_3d_mdm = [[], [], [], [], []]

                for bidx in range(len(enc_in)):

                    # Dropout probability 0 (keep probability 1) for sampling
                    dp = 1.0
                    loss, _, out_all_components = model.step(sess,
                                                             enc_in[bidx],
                                                             dec_out[bidx],
                                                             dp,
                                                             isTraining=False)

                    # denormalize the input 2d pose, ground truth 3d pose as well as 3d pose hypotheses from mdm
                    out_all_components = np.reshape(
                        out_all_components,
                        [-1, model.HUMAN_3D_SIZE + 2, model.num_models])
                    out_mean = out_all_components[:, :model.HUMAN_3D_SIZE, :]

                    enc_in[bidx] = data_utils.unNormalizeData(
                        enc_in[bidx], data_mean_2d, data_std_2d,
                        dim_to_ignore_2d)
                    dec_out[bidx] = data_utils.unNormalizeData(
                        dec_out[bidx], data_mean_3d, data_std_3d,
                        dim_to_ignore_3d)
                    poses3d = np.zeros(
                        (out_mean.shape[0], 96, out_mean.shape[-1]))
                    for j in range(out_mean.shape[-1]):
                        poses3d[:, :, j] = data_utils.unNormalizeData(
                            out_mean[:, :, j], data_mean_3d, data_std_3d,
                            dim_to_ignore_3d)

                    # extract the 17 joints
                    dtu3d = np.hstack(
                        (np.arange(3), dim_to_use_3d
                         )) if not (FLAGS.predict_14) else dim_to_use_3d
                    dec_out_17 = dec_out[bidx][:, dtu3d]
                    pose_3d_17 = poses3d[:, dtu3d, :]
                    sqerr = (pose_3d_17 -
                             np.expand_dims(dec_out_17, axis=2))**2
                    dists = np.zeros(
                        (sqerr.shape[0], n_joints, sqerr.shape[2]))
                    for m in range(dists.shape[-1]):
                        dist_idx = 0
                        for k in np.arange(0, n_joints * 3, 3):
                            dists[:, dist_idx, m] = np.sqrt(
                                np.sum(sqerr[:, k:k + 3, m], axis=1))
                            dist_idx = dist_idx + 1

                    [
                        pose_3d_mdm[i].append(poses3d[:, :, i])
                        for i in range(poses3d.shape[-1])
                    ]

                # Put all the poses together
                enc_in, dec_out = map(np.vstack, [enc_in, dec_out])
                for i in range(poses3d.shape[-1]):
                    pose_3d_mdm[i] = np.vstack(pose_3d_mdm[i])

                    # Convert back to world coordinates
                if FLAGS.camera_frame:
                    N_CAMERAS = 4
                    N_JOINTS_H36M = 32

                    # Add global position back
                    dec_out = dec_out + np.tile(test_root_positions[key3d],
                                                [1, N_JOINTS_H36M])
                    for i in range(poses3d.shape[-1]):
                        pose_3d_mdm[i] = pose_3d_mdm[i] + np.tile(
                            test_root_positions[key3d], [1, N_JOINTS_H36M])

                    # Load the appropriate camera
                    subj, action, sname = key3d

                    cname = sname.split('.')[1]  # <-- camera name
                    scams = {(subj, c + 1): rcams[(subj, c + 1)]
                             for c in range(N_CAMERAS)}  # cams of this subject
                    scam_idx = [
                        scams[(subj, c + 1)][-1] for c in range(N_CAMERAS)
                    ].index(cname)  # index of camera used
                    the_cam = scams[(subj,
                                     scam_idx + 1)]  # <-- the camera used
                    R, T, f, c, k, p, name = the_cam
                    assert name == cname

                    def cam2world_centered(data_3d_camframe):
                        data_3d_worldframe = cameras.camera_to_world_frame(
                            data_3d_camframe.reshape((-1, 3)), R, T)
                        data_3d_worldframe = data_3d_worldframe.reshape(
                            (-1, N_JOINTS_H36M * 3))
                        # subtract root translation
                        return data_3d_worldframe - np.tile(
                            data_3d_worldframe[:, :3], (1, N_JOINTS_H36M))

                    # Apply inverse rotation and translation
                    dec_out = cam2world_centered(dec_out)
                    for i in range(poses3d.shape[-1]):
                        pose_3d_mdm[i] = cam2world_centered(pose_3d_mdm[i])

                # sample some results to visualize
                np.random.seed(42)
                idx = np.random.permutation(enc_in.shape[0])
                enc_in, dec_out = enc_in[idx, :], dec_out[idx, :]
                for i in range(poses3d.shape[-1]):
                    pose_3d_mdm[i] = pose_3d_mdm[i][idx, :]

                exidx = 1
                nsamples = 20

                for i in np.arange(nsamples):
                    fig = plt.figure(figsize=(20, 5))

                    subplot_idx = 1
                    gs1 = gridspec.GridSpec(1, 7)  # 5 rows, 9 columns
                    gs1.update(wspace=-0.00,
                               hspace=0.05)  # set the spacing between axes.
                    plt.axis('off')

                    # Plot 2d pose
                    ax1 = plt.subplot(gs1[subplot_idx - 1])
                    p2d = enc_in[exidx, :]
                    viz.show2Dpose(p2d, ax1)
                    ax1.invert_yaxis()

                    # Plot 3d gt
                    ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
                    p3d = dec_out[exidx, :]
                    viz.show3Dpose(p3d, ax2)

                    # Plot 3d pose hypotheses

                    for i in range(poses3d.shape[-1]):
                        ax3 = plt.subplot(gs1[subplot_idx + i + 1],
                                          projection='3d')
                        p3d = pose_3d_mdm[i][exidx]
                        viz.show3Dpose(p3d,
                                       ax3,
                                       lcolor="#9b59b6",
                                       rcolor="#2ecc71")
                    # plt.show()
                    plt.savefig('{}/sample_{}_{}_{}_{}.png'.format(
                        path, subj, action, scam_idx, exidx))
                    plt.close(fig)
                    exidx = exidx + 1
Ejemplo n.º 20
0
    def train(self, config):

        # Define some parameters
        batch_idxs = 500
        decay_rate = 0.5     # empirical
        epochs_to_decay = 50

        boundaries = []
        lr_values = [config.learning_rate]
        for exp in range(1, 6):
          lr_values.append(config.learning_rate * (decay_rate)**exp)
          boundaries.append(batch_idxs * exp * epochs_to_decay)

        print(boundaries, lr_values)
        self.learning_rate = tf.train.piecewise_constant(self.global_step, boundaries, lr_values)
        self.lr_sum = tf.summary.scalar("lr", self.learning_rate)


        # TODO: check gradient magnitude here
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='generator/first_frame_generator')
        with tf.control_dependencies(update_ops):
            opt = tf.train.AdamOptimizer(self.learning_rate, beta1=0.5, beta2=0.9)

            g_grad = opt.compute_gradients(self.g_loss, var_list=self.g_vars)
            g_optim = opt.minimize(self.g_loss, var_list=self.g_vars)
            grad_sum = []

            if config.check_grad:

                layer_to_check = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=config.check_grad)

                check_list = []

                for pair in g_grad:
                    if pair[1] in layer_to_check:
                        check_list.append(pair[0])
                        grad_sum.append(tf.summary.histogram(pair[0].name, pair[0]))



        p_optim = tf.train.AdamOptimizer(self.learning_rate, beta1=0.5, beta2=0.9) \
                          .minimize(self.p_loss, var_list=self.p_vars)


        self.sess.run( tf.global_variables_initializer() )

        self.g_sum = tf.summary.merge(
            [self.z_sum, self.g_loss_sum] + grad_sum)
        self.p_sum = tf.summary.merge(
            [self.z_sum, self.p_loss_sum, self.p_grad_norm, self.p_gp_loss_sum] + self.p_vars_sum)


        counter = 1
        start_time = time.time()

        if config.load:
            self.load(self.checkpoint_dir)
            print("""

            ======
            An existing model was found in the checkpoint directory.
            If you want to train a new model from scratch,
            delete the checkpoint directory or specify a different
            --checkpoint_dir argument.
            ======

            """)
        else:
            print("""

            ======
            An existing model was not found in the checkpoint directory.
            Initializing a new one.
            ======

            """)


        # ======load data==================
        actions = data_utils.define_actions(self.actions)
        number_of_actions = len( actions )
        print('actions',actions)
        # Load camera parameters
        SUBJECT_IDS = [1,5,6,7,8,9,11]
        rcams = cameras.load_cameras(config.cameras_path, SUBJECT_IDS)

        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data_corrected( actions, config.dataset, rcams )
        print( "done reading and normalizing data." )

        n = 0
        for key2d in train_set_2d.keys():
            n2d, _ = train_set_2d[ key2d ].shape
            n = n + n2d//self.image_shape[0]

        nbatches = n // config.batch_size

        tr_loader = self.h36m_data_loader(config.batch_size, train_set_2d, config.seq_length, actions)
        te_loader = self.h36m_data_loader(config.sample_size, test_set_2d, config.seq_length, actions)

        for epoch in xrange(config.epoch):

            for idx in xrange(0, batch_idxs):


                batch_pose, batch_class = tr_loader.__next__()
                batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                            .astype(np.float32)

                if config.check_input:

                    if epoch == 0 and idx == 0:
                        for i in range(batch_pose.shape[0]):
                            draw_pose(batch_pose[i], os.path.join(config.pose_dir, 'input', 'class_%02d' %int(np.where(batch_class[i])[0])), '%d.jpg' %(i), data_mean_2d, data_std_2d, dim_to_ignore_2d)

              

                if epoch < 25:
                    n_iter = 25
                else:
                    n_iter = 5

                for _ in range(5):

                    _, p_loss = self.sess.run([p_optim, self.p_loss],
                        feed_dict={ self.z: batch_z, self.kp: 0.5, self.p_kp: 0.5, self.pose_vec: batch_pose, self.class_vec: batch_class,
                                    self.global_step: counter, self.g_is_training: True})

                for _ in range(1):

                    # Update G network
                    _, g_loss = self.sess.run([g_optim, self.g_loss],
                        feed_dict={ self.z: batch_z, self.kp: 0.5 , self.p_kp: 0.5, self.class_vec: batch_class,
                                    self.global_step: counter, self.g_is_training: True})
                   

                errG, errP, g_sum_str, p_sum_str, lr_sum = \
                self.sess.run([self.g_loss, self.p_loss,
                               self.g_sum, self.p_sum, self.lr_sum],
                               {self.z: batch_z, self.pose_vec: batch_pose, self.kp: 1.0, self.p_kp: 1.0, self.class_vec: batch_class,
                                self.global_step: counter, self.g_is_training: False})

                counter += 1
                print("\rEpoch: [%2d] [%4d/%4d] time: %4.4f, p_loss: %.8f,  g_loss: %.8f" \
                    % (epoch, idx, batch_idxs,
                        time.time() - start_time, errP, errG), end='')


                if np.mod(counter, batch_idxs) == 1:

                    g_loss_s = 0.0
                    p_loss_s, p_real_s, p_fake_s = 0.0, 0.0, 0.0
                    for b in range(self.val_nbatch):

                        sample_z = np.random.uniform(-1, 1, size=(config.sample_size , self.z_dim))
                        sample_pose, sample_class = te_loader.__next__()

                        samples, g_loss, p_loss = self.sess.run(
                            [self.G_first, self.g_loss, self.p_loss],
                            feed_dict={self.z: sample_z, self.kp: 1.0, self.p_kp: 1.0, self.pose_vec: sample_pose, self.class_vec: sample_class,
                                       self.g_is_training: False}
                        )


                        g_loss_s += g_loss
                        p_loss_s += p_loss

                        if config.val_save:
                            if b >= 1:
                                continue

                            for i in range(samples.shape[0]):
    
                                draw_pose(samples[i], os.path.join(config.pose_dir, 'train_%02d_%04d' %(epoch, idx), 'class_%02d' %int(np.where(sample_class[i])[0])), 'recons_%d.jpg' %(i), data_mean_2d, data_std_2d, dim_to_ignore_2d)
                          


                    g_loss_s /= self.val_nbatch
                    p_loss_s /= self.val_nbatch

                    print("\n[Sample] g_loss: %.8f, p_loss: %.8f" % (g_loss_s, p_loss))

                if np.mod(counter, 4000) == 1:
                    self.save(config.checkpoint_dir, counter + config.global_counter)
Ejemplo n.º 21
0
def main(_):
    smoothed = read_openpose_json()
    logger.info("reading and smoothing done. start feeding 3d-pose-baseline")
    plt.figure(2)
    smooth_curves_plot = show_anim_curves(smoothed, plt)
    pngName = 'png/smooth_plot.png'
    smooth_curves_plot.savefig(pngName)

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    device_count = {"GPU": 1}
    png_lib = []
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        for n, (frame, xy) in enumerate(smoothed.items()):
            logger.info("calc frame {0}".format(frame))
            # map list into np array
            joints_array = np.zeros((1, 36))
            joints_array[0] = [0 for i in range(36)]
            for o in range(len(joints_array[0])):
                #feed array with xy array
                joints_array[0][o] = xy[o]
            _data = joints_array[0]
            # mapping all body parts or 3d-pose-baseline format
            for i in range(len(order)):
                for j in range(2):
                    # create encoder input
                    enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
            for j in range(2):
                # Hip
                enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] +
                                        enc_in[0][6 * 2 + j]) / 2
                # Neck/Nose
                enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] +
                                         enc_in[0][12 * 2 + j]) / 2
                # Thorax
                enc_in[0][13 * 2 +
                          j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 +
                                                                     j]

            # set spine
            spine_x = enc_in[0][24]
            spine_y = enc_in[0][25]

            enc_in = enc_in[:, dim_to_use_2d]
            mu = data_mean_2d[dim_to_use_2d]
            stddev = data_std_2d[dim_to_use_2d]
            enc_in = np.divide((enc_in - mu), stddev)

            dp = 1.0
            dec_out = np.zeros((1, 48))
            dec_out[0] = [0 for i in range(48)]
            _, _, poses3d = model.step(sess,
                                       enc_in,
                                       dec_out,
                                       dp,
                                       isTraining=False)
            all_poses_3d = []
            enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d,
                                                data_std_2d, dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                 data_std_3d, dim_to_ignore_3d)
            gs1 = gridspec.GridSpec(1, 1)
            gs1.update(wspace=-0.00,
                       hspace=0.05)  # set the spacing between axes.
            plt.axis('off')
            all_poses_3d.append(poses3d)
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])
            subplot_idx, exidx = 1, 1
            max = 0
            min = 10000

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    tmp = poses3d[i][j * 3 + 2]
                    poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                    poses3d[i][j * 3 + 1] = tmp
                    if poses3d[i][j * 3 + 2] > max:
                        max = poses3d[i][j * 3 + 2]
                    if poses3d[i][j * 3 + 2] < min:
                        min = poses3d[i][j * 3 + 2]

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    poses3d[i][j * 3 + 2] = max - poses3d[i][j * 3 + 2] + min
                    poses3d[i][j * 3] += (spine_x - 630)
                    poses3d[i][j * 3 + 2] += (500 - spine_y)

            # Plot 3d predictions
            ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
            ax.view_init(18, -70)
            logger.debug(np.min(poses3d))
            if np.min(poses3d) < -1000:
                poses3d = before_pose

            p3d = poses3d
            logger.debug(poses3d)
            viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71")

            pngName = 'png/test_{0}.png'.format(str(frame))
            plt.savefig(pngName)
            png_lib.append(imageio.imread(pngName))
            before_pose = poses3d

    logger.info("creating Gif png/movie_smoothing.gif, please Wait!")
    imageio.mimsave('png/movie_smoothing.gif', png_lib, fps=FLAGS.gif_fps)
    logger.info("Done!".format(pngName))
Ejemplo n.º 22
0
def train():
    """Train a linear model for 3d pose estimation"""

    actions = data_utils.define_actions(
        FLAGS.action)  #returns a list of corresponding actions

    number_of_actions = len(actions)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]  #1,5,6,7,8 for train, 9,11 for test
    rcams = cameras.load_cameras(FLAGS.cameras_path,
                                 SUBJECT_IDS)  #得到了关于camera的参数
    #print("相机的参数")

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)
    #print(data_mean_3d.shape[1],"平均值的大小")
    #assert 1==2,"debug结束"
    #train_set_3d是个dict,key为(S的编码,action,文件名)+pose(n,96)的大小
    # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data", test_set_2d.shape)

    # Avoid using the GPU if requested
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        print("Creating %d bi-layers of %d units." %
              (FLAGS.num_layers,
               FLAGS.linear_size))  #打印出来的是Creating 2 bi-layers of 1024 units.
        model = create_model(sess, actions,
                             FLAGS.batch_size)  #FLAGS的batch_size是64
        model.train_writer.add_graph(sess.graph)  #将图添加到tensorboard中
        print("Model created")

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1  #之后需要载入checkpoint

        previous_losses = []

        step_time, loss = 0, 0
        current_epoch = 0
        log_every_n_batches = 100  #每100次打印一下

        for _ in xrange(FLAGS.epochs):  #与range类似但也有不同之处
            current_epoch = current_epoch + 1

            # === Load training batches for one epoch === 在这里输入和输出的还是32和48为的
            encoder_inputs, decoder_outputs = model.get_all_batches(
                train_set_2d, train_set_3d, FLAGS.camera_frame, training=True)
            #按照batch的大小对输入和输出进行切片,切成[array(n1,32/48),array(n2,32/48),...,...]

            nbatches = len(encoder_inputs)
            print("There are {0} train batches".format(
                nbatches))  #24371个branches
            start_time, loss = time.time(), 0.

            # === Loop through all the training batches ===
            for i in range(nbatches):

                if (i + 1) % log_every_n_batches == 0:
                    # Print progress every log_every_n_batches batches
                    print("Working on epoch {0}, batch {1} / {2}... ".format(
                        current_epoch, i + 1, nbatches),
                          end="")

                enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
                #print(enc_in.shape,dec_out.shape)  (64,32)和(64,48)

                #将输入值输入到model模型中,
                step_loss, loss_summary, lr_summary, _ = model.step(
                    sess, enc_in, dec_out, FLAGS.dropout, isTraining=True)

                if (i + 1) % log_every_n_batches == 0:
                    # Log and print progress every log_every_n_batches batches 每100次就将结果写到tensorboard中去
                    model.train_writer.add_summary(loss_summary, current_step)
                    model.train_writer.add_summary(lr_summary, current_step)
                    step_time = (time.time() - start_time)
                    start_time = time.time()
                    print("done in {0:.2f} ms".format(1000 * step_time /
                                                      log_every_n_batches))

                loss += step_loss
                current_step += 1
                # === end looping through training batches ===

            loss = loss / nbatches
            print("=============================\n"
                  "Global step:         %d\n"
                  "Learning rate:       %.2e\n"
                  "Train loss avg:      %.4f\n"
                  "=============================" %
                  (model.global_step.eval(), model.learning_rate.eval(), loss))
            # === End training for an epoch ===

            # === Testing after this epoch ===
            isTraining = False

            if FLAGS.evaluateActionWise:

                print("{0:=^12} {1:=^6}".format(
                    "Action",
                    "mm"))  # line of 30 equal signs  即为====Action====mm

                cum_err = 0
                for action in actions:

                    print("{0:<12} ".format(action), end="")
                    # Get 2d and 3d testing data for this action 并将他们按照batch的大小切割好(不需要训练的话,就不需要随机排列了
                    action_test_set_2d = get_action_subset(test_set_2d, action)
                    action_test_set_3d = get_action_subset(test_set_3d, action)
                    encoder_inputs, decoder_outputs = model.get_all_batches(
                        action_test_set_2d,
                        action_test_set_3d,
                        FLAGS.camera_frame,
                        training=False)

                    #evaluate_batches要好好看一下
                    act_err, _, step_time, loss = evaluate_batches(
                        sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                        dim_to_ignore_3d, data_mean_2d, data_std_2d,
                        dim_to_use_2d, dim_to_ignore_2d, current_step,
                        encoder_inputs, decoder_outputs)
                    cum_err = cum_err + act_err

                    print("{0:>6.2f}".format(act_err))

                summaries = sess.run(
                    model.err_mm_summary,
                    {model.err_mm: float(cum_err / float(len(actions)))})
                model.test_writer.add_summary(summaries, current_step)
                print("{0:<12} {1:>6.2f}".format("Average", cum_err /
                                                 float(len(actions))))
                print("{0:=^19}".format(''))

            else:

                n_joints = 17 if not (FLAGS.predict_14) else 14
                encoder_inputs, decoder_outputs = model.get_all_batches(
                    test_set_2d,
                    test_set_3d,
                    FLAGS.camera_frame,
                    training=False)

                total_err, joint_err, step_time, loss = evaluate_batches(
                    sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                    dim_to_ignore_3d, data_mean_2d, data_std_2d, dim_to_use_2d,
                    dim_to_ignore_2d, current_step, encoder_inputs,
                    decoder_outputs, current_epoch)

                print("=============================\n"
                      "Step-time (ms):      %.4f\n"
                      "Val loss avg:        %.4f\n"
                      "Val error avg (mm):  %.2f\n"
                      "=============================" %
                      (1000 * step_time, loss, total_err))

                for i in range(n_joints):
                    # 6 spaces, right-aligned, 5 decimal places
                    print("Error in joint {0:02d} (mm): {1:>5.2f}".format(
                        i + 1, joint_err[i]))
                print("=============================")

                # Log the error to tensorboard
                summaries = sess.run(model.err_mm_summary,
                                     {model.err_mm: total_err})
                model.test_writer.add_summary(summaries, current_step)

            # Save the model
            print("Saving the model... ", end="")
            start_time = time.time()
            model.saver.save(sess,
                             os.path.join(train_dir, 'checkpoint'),
                             global_step=current_step)
            print("done in {0:.2f} ms".format(1000 *
                                              (time.time() - start_time)))

            # Reset global time and loss
            step_time, loss = 0, 0

            sys.stdout.flush()
def hankgogo(gogodata, gogodatafake):
    """Get samples from a model and visualize them"""

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    #if FLAGS.use_sh:
    #  train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
    #else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
        actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data.")

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = 1
        model = create_model_my(sess, actions, batch_size)
        print("Model loaded")

        # Dropout probability 0 (keep probability 1) for sampling
        dp = 1.0
        poses3d = model.step(sess, gogodata, isTraining=False)
        tesmp = poses3d
        poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                             data_std_3d, dim_to_ignore_3d)
        model.saver.save(sess, os.path.join(mysave_dir, "gogo"))

    # Grab a random batch to visualize

# enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
# idx = np.random.permutation( enc_in.shape[0] )
# enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]

# Visualize random samples
    import matplotlib.gridspec as gridspec

    # 1080p	= 1,920 x 1,080
    fig = plt.figure(figsize=(19.2, 10.8))

    gs1 = gridspec.GridSpec(5, 9)  # 5 rows, 9 columns
    gs1.update(wspace=-0.00, hspace=0.05)  # set the spacing between axes.
    plt.axis('off')

    subplot_idx, exidx = 1, 1
    nsamples = 1
    # Plot 2d pose
    #ax1 = plt.subplot(gs1[subplot_idx-1])
    #p2d = enc_in[exidx,:]
    #viz.show2Dpose( p2d, ax1 )
    #ax1.invert_yaxis()

    # Plot 3d gt
    #ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
    #p3d = dec_out[exidx,:]
    #viz.show3Dpose( p3d, ax2 )

    # Plot 3d predictions
    ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d')
    p3d = poses3d
    viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71")

    exidx = exidx + 1
    subplot_idx = subplot_idx + 3

    plt.show()
Ejemplo n.º 24
0
def main(_):
    done = []

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    device_count = {"GPU": 0}
    png_lib = []
    with tf.Session(config=tf.ConfigProto(device_count=device_count,
                                          allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        while True:
            key = cv2.waitKey(1) & 0xFF
            #logger.info("start reading data")
            # check for other file types
            list_of_files = glob.iglob("{0}/*".format(
                openpose_output_dir))  # You may use iglob in Python3
            latest_file = ""
            try:
                latest_file = max(list_of_files, key=os.path.getctime)
            except ValueError:
                #empthy dir
                pass
            if not latest_file:
                continue
            try:
                _file = file_name = latest_file
                print(latest_file)
                if not os.path.isfile(_file):
                    raise Exception("No file found!!, {0}".format(_file))
                data = json.load(open(_file))
                #take first person
                _data = data["people"][0]["pose_keypoints"]
                xy = []
                #ignore confidence score
                for o in range(0, len(_data), 3):
                    xy.append(_data[o])
                    xy.append(_data[o + 1])

                frame_indx = re.findall("(\d+)", file_name)
                frame = int(frame_indx[0])

                joints_array = np.zeros((1, 36))
                joints_array[0] = [0 for i in range(36)]
                for o in range(len(joints_array[0])):
                    #feed array with xy array
                    joints_array[0][o] = xy[o]
                _data = joints_array[0]
                # mapping all body parts or 3d-pose-baseline format
                for i in range(len(order)):
                    for j in range(2):
                        # create encoder input
                        enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
                for j in range(2):
                    # Hip
                    enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] +
                                            enc_in[0][6 * 2 + j]) / 2
                    # Neck/Nose
                    enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] +
                                             enc_in[0][12 * 2 + j]) / 2
                    # Thorax
                    enc_in[0][
                        13 * 2 +
                        j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j]

                # set spine
                spine_x = enc_in[0][24]
                spine_y = enc_in[0][25]

                enc_in = enc_in[:, dim_to_use_2d]
                mu = data_mean_2d[dim_to_use_2d]
                stddev = data_std_2d[dim_to_use_2d]
                enc_in = np.divide((enc_in - mu), stddev)

                dp = 1.0
                dec_out = np.zeros((1, 48))
                dec_out[0] = [0 for i in range(48)]
                _, _, poses3d = model.step(sess,
                                           enc_in,
                                           dec_out,
                                           dp,
                                           isTraining=False)
                all_poses_3d = []
                enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d,
                                                    data_std_2d,
                                                    dim_to_ignore_2d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                gs1 = gridspec.GridSpec(1, 1)
                gs1.update(wspace=-0.00,
                           hspace=0.05)  # set the spacing between axes.
                plt.axis('off')
                all_poses_3d.append(poses3d)
                enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])
                subplot_idx, exidx = 1, 1
                _max = 0
                _min = 10000

                for i in range(poses3d.shape[0]):
                    for j in range(32):
                        tmp = poses3d[i][j * 3 + 2]
                        poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                        poses3d[i][j * 3 + 1] = tmp
                        if poses3d[i][j * 3 + 2] > _max:
                            _max = poses3d[i][j * 3 + 2]
                        if poses3d[i][j * 3 + 2] < _min:
                            _min = poses3d[i][j * 3 + 2]

                for i in range(poses3d.shape[0]):
                    for j in range(32):
                        poses3d[i][j * 3 +
                                   2] = _max - poses3d[i][j * 3 + 2] + _min
                        poses3d[i][j * 3] += (spine_x - 630)
                        poses3d[i][j * 3 + 2] += (500 - spine_y)

                # Plot 3d predictions
                ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
                ax.view_init(18, -70)
                logger.debug(np.min(poses3d))
                if np.min(poses3d) < -1000 and frame != 0:
                    poses3d = before_pose

                p3d = poses3d

                viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71")
                before_pose = poses3d
                pngName = 'png/test_{0}.png'.format(str(frame))
                plt.savefig(pngName)

                #plt.show()
                img = cv2.imread(pngName, 0)
                rect_cpy = img.copy()
                cv2.imshow('3d-pose-baseline', rect_cpy)
                done.append(file_name)
                if key == ord('q'):
                    break
            except Exception as e:
                print(e)

        sess.close()
Ejemplo n.º 25
0
def main(_):
    
    smoothed = read_openpose_json()
    plt.figure(2)
    smooth_curves_plot = show_anim_curves(smoothed, plt)
    #return
    pngName = 'gif_output/smooth_plot.png'
    smooth_curves_plot.savefig(pngName)
    logger.info('writing gif_output/smooth_plot.png')
    
    if FLAGS.interpolation:
        logger.info("start interpolation")

        framerange = len( smoothed.keys() )
        joint_rows = 36
        array = np.concatenate(list(smoothed.values()))
        array_reshaped = np.reshape(array, (framerange, joint_rows) )
    
        multiplier = FLAGS.multiplier
        multiplier_inv = 1/multiplier

        out_array = np.array([])
        for row in range(joint_rows):
            x = []
            for frame in range(framerange):
                x.append( array_reshaped[frame, row] )
            
            frame = range( framerange )
            frame_resampled = np.arange(0, framerange, multiplier)
            spl = UnivariateSpline(frame, x, k=3)
            #relative smooth factor based on jnt anim curve
            min_x, max_x = min(x), max(x)
            smooth_fac = max_x - min_x
            smooth_resamp = 125
            smooth_fac = smooth_fac * smooth_resamp
            spl.set_smoothing_factor( float(smooth_fac) )
            xnew = spl(frame_resampled)
            
            out_array = np.append(out_array, xnew)
    
        logger.info("done interpolating. reshaping {0} frames,  please wait!!".format(framerange))
    
        a = np.array([])
        for frame in range( int( framerange * multiplier_inv ) ):
            jnt_array = []
            for jnt in range(joint_rows):
                jnt_array.append( out_array[ jnt * int(framerange * multiplier_inv) + frame] )
            a = np.append(a, jnt_array)
        
        a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows))
        out_array = a
    
        interpolate_smoothed = {}
        for frame in range( int(framerange * multiplier_inv) ):
            interpolate_smoothed[frame] = list( out_array[frame] )
        
        plt.figure(3)
        smoothed = interpolate_smoothed
        interpolate_curves_plot = show_anim_curves(smoothed, plt)
        pngName = 'gif_output/interpolate_{0}.png'.format(smooth_resamp)
        interpolate_curves_plot.savefig(pngName)
        logger.info('writing gif_output/interpolate_plot.png')

    enc_in = np.zeros((1, 64))
    enc_in[0] = [0 for i in range(64)]

    actions = data_utils.define_actions(FLAGS.action)

    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
        actions, FLAGS.data_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    device_count = {"GPU": 1}
    png_lib = []
    before_pose = None
    with tf.Session(config=tf.ConfigProto(
            device_count=device_count,
            allow_soft_placement=True)) as sess:
        #plt.figure(3)
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        iter_range = len(smoothed.keys())
        export_units = {}
        twod_export_units = {}
        for n, (frame, xy) in enumerate(smoothed.items()):
            logger.info("calc frame {0}/{1}".format(frame, iter_range))
            # map list into np array  
            joints_array = np.zeros((1, 36))
            joints_array[0] = [0 for i in range(36)]
            for o in range(len(joints_array[0])):
                #feed array with xy array
                joints_array[0][o] = xy[o]

            twod_export_units[frame]={}
            for abs_b, __n in enumerate(range(0, len(xy),2)):
                twod_export_units[frame][abs_b] = {"translate": [xy[__n],xy[__n+1]]}

            _data = joints_array[0]
            # mapping all body parts or 3d-pose-baseline format
            for i in range(len(order)):
                for j in range(2):
                    # create encoder input
                    enc_in[0][order[i] * 2 + j] = _data[i * 2 + j]
            for j in range(2):
                # Hip
                enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2
                # Neck/Nose
                enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2
                # Thorax
                enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j]

            # set spine
            spine_x = enc_in[0][24]
            spine_y = enc_in[0][25]

            enc_in = enc_in[:, dim_to_use_2d]
            mu = data_mean_2d[dim_to_use_2d]
            stddev = data_std_2d[dim_to_use_2d]
            enc_in = np.divide((enc_in - mu), stddev)

            dp = 1.0
            dec_out = np.zeros((1, 48))
            dec_out[0] = [0 for i in range(48)]
            _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False)
            all_poses_3d = []
            enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d)
            gs1 = gridspec.GridSpec(1, 1)
            gs1.update(wspace=-0.00, hspace=0.05)  # set the spacing between axes.
            plt.axis('off')
            all_poses_3d.append( poses3d )
            enc_in, poses3d = map( np.vstack, [enc_in, all_poses_3d] )
            subplot_idx, exidx = 1, 1
            _max = 0
            _min = 10000

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    tmp = poses3d[i][j * 3 + 2]
                    poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1]
                    poses3d[i][j * 3 + 1] = tmp
                    if poses3d[i][j * 3 + 2] > _max:
                        _max = poses3d[i][j * 3 + 2]
                    if poses3d[i][j * 3 + 2] < _min:
                        _min = poses3d[i][j * 3 + 2]

            for i in range(poses3d.shape[0]):
                for j in range(32):
                    poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min
                    poses3d[i][j * 3] += (spine_x - 630)
                    poses3d[i][j * 3 + 2] += (500 - spine_y)

            # Plot 3d predictions
            ax = plt.subplot(gs1[subplot_idx - 1], projection='3d')
            ax.view_init(18, -70)    

            if FLAGS.cache_on_fail:
                if np.min(poses3d) < -1000:
                    poses3d = before_pose

            p3d = poses3d
            to_export = poses3d.tolist()[0]
            x,y,z = [[] for _ in range(3)]
            for o in range(0, len(to_export), 3):
                x.append(to_export[o])
                y.append(to_export[o+1])
                z.append(to_export[o+2])
            export_units[frame]={}
            for jnt_index, (_x, _y, _z) in enumerate(zip(x,y,z)):
                export_units[frame][jnt_index] = {"translate": [_x, _y, _z]}


            viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71")

            pngName = 'png/pose_frame_{0}.png'.format(str(frame).zfill(12))
            plt.savefig(pngName)
            if FLAGS.write_gif:
                png_lib.append(imageio.imread(pngName))

            if FLAGS.cache_on_fail:
                before_pose = poses3d

    if FLAGS.write_gif:
        if FLAGS.interpolation:
            #take every frame on gif_fps * multiplier_inv
            png_lib = np.array([png_lib[png_image] for png_image in range(0,len(png_lib), int(multiplier_inv)) ])
        logger.info("creating Gif gif_output/animation.gif, please Wait!")
        imageio.mimsave('gif_output/animation.gif', png_lib, fps=FLAGS.gif_fps)

    _out_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'maya/3d_data.json')
    twod_out_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'maya/2d_data.json')
    with open(_out_file, 'w') as outfile:
        logger.info("exported maya json to {0}".format(_out_file))
        json.dump(export_units, outfile)
    with open(twod_out_file, 'w') as outfile:
        logger.info("exported maya json to {0}".format(twod_out_file))
        json.dump(twod_export_units, outfile)

    logger.info("Done!".format(pngName))
def create_movie():
    actions = define_actions("All")
    rcams, vcams = cameras.load_cameras('cameras.h5', [1, 5, 6, 7, 8, 9, 11])
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1)
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    os.system('mkdir -p ' + FLAGS.output_dir)
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions, offsets_train, offsets_test = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, vcams)
    if (FLAGS.use_sh):
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams, vcams)

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                          device_count=device_count)) as sess:
        # === Create the model ===
        isTraining = False
        batch_size = 1
        nsamples = batch_size
        isTraining = False

        model = create_model(sess, isTraining, dim_to_use_3d, 1, data_mean_3d,
                             data_std_3d, dim_to_ignore_3d)
        print("Model created")

        with h5py.File(FLAGS.data_2d_path, 'r') as h5f:
            enc_in = h5f['enc_in'][:]
            enc_in = enc_in[:, dim_to_use_2d]

        mu = data_mean_2d[dim_to_use_2d]
        stddev = data_std_2d[dim_to_use_2d]
        enc_in = np.divide((enc_in - mu), stddev)
        n2d = enc_in.shape[0]
        n_extra = n2d % FLAGS.seqlen
        if n_extra > 0:
            enc_in = enc_in[:-n_extra, :]
        n2d = enc_in.shape[0]

        pose_2d_sliding = []
        encoder_inputs = []
        for i in range(n2d - FLAGS.seqlen + 1):
            pose_2d_sliding.append(enc_in[i:i + FLAGS.seqlen, :])
        pose_2d_list = np.stack(pose_2d_sliding)
        encoder_inputs.append(pose_2d_list)
        encoder_inputs = np.vstack(encoder_inputs)
        n_splits = n2d - FLAGS.seqlen + 1
        encoder_inputs = np.array_split(encoder_inputs, n_splits)
        all_poses_3d = []
        enc_inputs = []
        ### MAKE PREDICTIONS ######

        for bidx in range(len(encoder_inputs)):
            # print("Working on batch {0} / {1}... ".format( bidx+1, len(enc_in)), end="" )
            dp = 1.0
            enc_in = encoder_inputs[bidx]
            dec_out = np.zeros(shape=(1, FLAGS.seqlen, 48))
            enc_gt = 0
            _, _, poses3d = model.step(sess,
                                       enc_in,
                                       dec_out,
                                       dp,
                                       isTraining=False)

            enc_in = np.reshape(enc_in, [-1, 16 * 2])
            poses3d = np.reshape(poses3d, [-1, 16 * 3])
            if not (bidx == 0):
                enc_in = np.expand_dims(enc_in[FLAGS.seqlen - 1, :], axis=0)
                poses3d = np.expand_dims(poses3d[FLAGS.seqlen - 1, :], axis=0)
            inp = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d,
                                             dim_to_ignore_2d)
            poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                 data_std_3d, dim_to_ignore_3d)
            enc_inputs.append(inp)
            all_poses_3d.append(poses3d)

        enc_in = np.vstack(enc_inputs)
        poses3d = np.vstack(all_poses_3d)

        ## Choose camera_id for reconstruction into world coordinate
        ### NOTE: FOR ARBITRARY 2D detections selecting any camera of subject 9 and 11 works

        the_cam = rcams[(
            FLAGS.sub_id,
            FLAGS.cam_id)]  #54138969# 55011271# 58860488 # 60457274
        R, _, _, _, _, _, name = the_cam
        print(name)
        # # Apply inverse rotation and translation
        poses3d = np.reshape(poses3d, [-1, 3])
        #### NOTE: ONLY the rotation param matters
        X_cam = R.T.dot(poses3d.T)
        poses3d = np.reshape(X_cam.T, [-1, 32 * 3])

        poses3d = poses3d - np.tile(poses3d[:, :3], [1, 32])
        # We should be all set now :)

        ##### GENERATE THE MOVIE

        fig = plt.figure(figsize=(12.8, 7.2))
        ax1 = fig.add_subplot(1, 2, 1)
        ax2 = fig.add_subplot(1, 2, 1 + 1, projection='3d')
        n2d = enc_in.shape[0]
        ob1 = viz.Ax2DPose(ax1)
        ob2 = viz.Ax3DPose(ax2, lcolor="#9b59b6", rcolor="#2ecc71")

        fnames = sorted(glob.glob(FLAGS.img_dir + "*.jpg"))
        #print(fnames[0],fnames[1])
        for i in range(n2d):
            #t0 = time()
            print("Working on figure {0:04d} / {1:05d}... \n".format(
                i + 1, n2d),
                  end='')
            p2d = enc_in[i, :]
            im = Image.open(fnames[i])
            ob1.update(im, p2d)
            # Plot 3d gt
            p3d = poses3d[i, :]
            ob2.update(p3d)
            fig.canvas.draw()
            img_str = np.fromstring(fig.canvas.tostring_rgb(), np.uint8)
            ncols, nrows = fig.canvas.get_width_height()
            nparr = np.fromstring(img_str,
                                  dtype=np.uint8).reshape(nrows, ncols, 3)
            #img_np = cv2.imdecode(nparr, cv2.CV_LOAD_IMAGE_COLOR)
            print(FLAGS.output_dir + '{0:05d}.jpg'.format(i + 1))
            cv2.imwrite(FLAGS.output_dir + '{0:05d}.jpg'.format(i + 1),
                        nparr[:, :, ::-1])
def main(_):
    actions_all = data_utils.define_actions("All")
    actions = data_utils.define_actions("Discussion")

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)
    train_set_3d = data_utils.remove_first_frame(train_set_3d)
    test_set_3d = data_utils.remove_first_frame(test_set_3d)
    train_root_positions = data_utils.remove_first_frame(train_root_positions)
    test_root_positions = data_utils.remove_first_frame(test_root_positions)
    print("Finished Read 3D Data")

    # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions_all, FLAGS.data_dir)
    # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction(train_set_2d,
    #                                                                                                                                        test_set_2d,
    #                                                                                                                                        data_mean_2d,
    #                                                                                                                                        data_std_2d,
    #                                                                                                                                        dim_to_ignore_2d,
    #                                                                                                                                        dim_to_use_2d)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
        actions_all, FLAGS.data_dir, rcams)
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction(
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d,
        dim_to_use_2d)

    SH_TO_GT_PERM = np.array(
        [SH_NAMES.index(h) for h in H36M_NAMES if h != '' and h in SH_NAMES])
    assert np.all(SH_TO_GT_PERM == np.array(
        [6, 2, 1, 0, 3, 4, 5, 7, 8, 9, 13, 14, 15, 12, 11, 10]))

    test_set = {}

    manipulation_dir = os.path.dirname(FLAGS.data_dir)
    manipulation_dir = os.path.dirname(manipulation_dir)
    manipulation_dir += '/manipulation_video/'
    manipulation_folders = glob.glob(manipulation_dir + '*')

    subj = 1
    action = 'manipulation-video'
    for folder in manipulation_folders:
        seqname = os.path.basename(folder)
        with h5py.File(folder + '/' + seqname + '.h5', 'r') as h5f:
            poses = h5f['poses'][:]

            # Permute the loaded data to make it compatible with H36M
            poses = poses[:, SH_TO_GT_PERM, :]

            # Reshape into n x (32*2) matrix
            poses = np.reshape(poses, [poses.shape[0], -1])
            poses_final = np.zeros([poses.shape[0], len(H36M_NAMES) * 2])

            dim_to_use_x = np.where(
                np.array([x != '' and x != 'Neck/Nose'
                          for x in H36M_NAMES]))[0] * 2
            dim_to_use_y = dim_to_use_x + 1

            dim_to_use = np.zeros(len(SH_NAMES) * 2, dtype=np.int32)
            dim_to_use[0::2] = dim_to_use_x
            dim_to_use[1::2] = dim_to_use_y
            poses_final[:, dim_to_use] = poses

            print(seqname, poses_final.shape)
            poses_final[poses_final == 0.] = 0.1
            test_set[(subj, action, seqname)] = poses_final

    test_set = data_utils.uni_frame_to_bi_frame(test_set)
    test_set_2d = data_utils.normalize_data(test_set, data_mean_2d,
                                            data_std_2d, dim_to_use_2d)
    for key in test_set.keys():
        test_set[key] = test_set[key][0::2, :]

    dim_to_use_12_manipulation_joints = np.array([
        3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 51,
        52, 53, 54, 55, 56, 57, 58, 59, 75, 76, 77, 78, 79, 80, 81, 82, 83
    ])

    print("Finished Normalize Manipualtion Videos")
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = FLAGS.batch_size  #Intial code is 64*2
        model = predict_3dpose_biframe.create_model(sess, actions_all,
                                                    batch_size)
        print("Model loaded")

        j = 0
        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d
            # if fname !=  specific_seqname + '.h5':
            #     continue
            print("Subject: {}, action: {}, fname: {}".format(subj, b, fname))

            enc_in = test_set_2d[key2d]
            n2d, _ = enc_in.shape

            # Split into about-same-size batches
            enc_in = np.array_split(enc_in, n2d // 1)
            all_poses_3d = []

            for bidx in range(len(enc_in)):

                # Dropout probability 0 (keep probability 1) for sampling
                dp = 1.0
                anything = np.zeros((enc_in[bidx].shape[0], 48))
                _, _, poses3d = model.step(sess,
                                           enc_in[bidx],
                                           anything,
                                           dp,
                                           isTraining=False)

                # Denormalize
                enc_in[bidx] = data_utils.unNormalizeData(
                    enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                all_poses_3d.append(poses3d)

            # Put all the poses together
            enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d])

            enc_in, poses3d = map(np.vstack, [enc_in, poses3d])

            poses3d_12_manipulation = poses3d[:,
                                              dim_to_use_12_manipulation_joints]

            annotated_images = glob.glob(manipulation_dir + fname +
                                         '/info/*.xml')
            annotated_images = sorted(annotated_images)

            # 1080p	= 1,920 x 1,080
            fig = plt.figure(j, figsize=(10, 10))
            gs1 = gridspec.GridSpec(3, 3)
            gs1.update(wspace=-0, hspace=0.1)  # set the spacing between axes.
            plt.axis('off')

            subplot_idx = 1
            nsamples = 3
            for i in np.arange(nsamples):
                # Plot 2d Detection
                ax1 = plt.subplot(gs1[subplot_idx - 1])
                img = mpimg.imread(
                    manipulation_dir + fname + '/skeleton_cropped/' +
                    os.path.basename(annotated_images[i]).split('_')[0] +
                    '.jpg')
                ax1.imshow(img)

                # Plot 2d pose
                ax2 = plt.subplot(gs1[subplot_idx])
                # p2d = enc_in[i,:]
                # viz.show2Dpose( p2d, ax2 )
                # ax2.invert_yaxis()
                ax2.imshow(img)

                # Plot 3d predictions
                # Compute first the procrustion and print error
                gt = getJ3dPosFromXML(annotated_images[i])
                A = poses3d_12_manipulation[i, :].reshape(gt.shape)
                _, Z, T, b, c = procrustes.compute_similarity_transform(
                    gt, A, compute_optimal_scale=True)
                sqerr = np.sqrt(np.sum((gt - (b * A.dot(T)) - c)**2, axis=1))
                print("{0} - {1} - Mean Error (mm) : {2}".format(
                    fname, os.path.basename(annotated_images[i]),
                    np.mean(sqerr)))

                ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d')
                temp = poses3d[i, :].reshape((32, 3))
                temp = c + temp.dot(T)  #Do not scale
                # p3d = temp.reshape((1, 96))
                p3d = poses3d[i, :]
                viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71")
                ax3.invert_zaxis()
                ax3.invert_yaxis()

                subplot_idx = subplot_idx + 3

            plt.show()
            j += 1
Ejemplo n.º 28
0
def predict(convert_to_world):
    """
  Run the model and predict pose data

  convert_to_world is a flag indicating whether to convert the data back to 
  world coordinates from the camera frame.
  """

    actions = data_utils.define_actions(FLAGS.action)

    # Load camera parameters
    SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
    rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

    # Load 3d data and load (or create) 2d projections
    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)

    if FLAGS.use_sh:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams)
    print("done reading and normalizing data.")

    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
    with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess:
        # === Create the model ===
        print("Creating %d layers of %d units." %
              (FLAGS.num_layers, FLAGS.linear_size))
        batch_size = 128
        model = create_model(sess, actions, batch_size)
        print("Model loaded")

        for key2d in test_set_2d.keys():

            (subj, b, fname) = key2d
            print("Subject: {}, action: {}, fname: {}".format(subj, b, fname))

            # keys should be the same if 3d is in camera coordinates
            key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(
                fname.split('.')[0]))
            key3d = (subj, b, fname[:-3]) if (
                fname.endswith('-sh')) and FLAGS.camera_frame else key3d

            enc_in = test_set_2d[key2d]
            n2d, _ = enc_in.shape
            dec_out = test_set_3d[key3d]
            n3d, _ = dec_out.shape
            assert n2d == n3d

            # Generate the loss pairs
            loss_pairs = None
            if model.num_loss_pairs:
                num_pts = int(model.HUMAN_3D_SIZE / 3)
                pairs = np.asarray([(i, j) for i in range(num_pts)
                                    for j in range(num_pts) if i < j])
                pair_idxs = [
                    np.random.choice(len(pairs),
                                     model.num_loss_pairs,
                                     replace=False) for _ in range(n3d)
                ]
                loss_pairs = np.take(pairs, pair_idxs, axis=0)
                loss_pairs = np.array_split(loss_pairs, n2d // batch_size)

            # Split into about-same-size batches
            enc_in = np.array_split(enc_in, n2d // batch_size)
            dec_out = np.array_split(dec_out, n3d // batch_size)
            all_poses_3d = []

            # enc_in_modified = []

            for bidx in range(len(enc_in)):

                # Dropout probability 0 (keep probability 1) for sampling
                dp = 1.0
                if model.num_loss_pairs:
                    _, _, poses3d = model.step(sess,
                                               enc_in[bidx],
                                               dec_out[bidx],
                                               dp,
                                               loss_pairs=loss_pairs[bidx],
                                               isTraining=False)
                else:
                    _, _, poses3d = model.step(sess,
                                               enc_in[bidx],
                                               dec_out[bidx],
                                               dp,
                                               isTraining=False)

                # poses3dnew = []
                # for e in enc_in[bidx]:
                #   poses3dnew.append(np.insert(e, range(1, len(e)+1, 2), poses3d[1::3]))
                # poses3d = poses3dnew
                # print (bidx)
                # print (len(enc_in[bidx]))
                # print (enc_in[bidx])
                # print (data_mean_2d)
                # print (data_mean_3d)
                # data_mean_2d_modified = np.delete(data_mean_3d, np.arange(2, data_mean_3d.size, 3))
                # data_std_2d_modified = np.delete(data_std_3d, np.arange(2, data_std_3d.size, 3))

                # denormalize
                # enc_in_modified.append(data_utils.unNormalizeData(  enc_in[bidx], data_mean_2d_modified, data_std_2d_modified, dim_to_ignore_2d ))
                enc_in[bidx] = data_utils.unNormalizeData(
                    enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d)
                dec_out[bidx] = data_utils.unNormalizeData(
                    dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d)
                poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d,
                                                     data_std_3d,
                                                     dim_to_ignore_3d)
                all_poses_3d.append(poses3d)

                # print (len(enc_in[bidx]))
                # print (len(poses3d))
            # print (len(enc_in[0]))
            # print (len(poses3d[0]))

            # Put all the poses together
            # enc_in_modified = np.vstack(enc_in_modified)
            enc_in, dec_out, poses3d = map(np.vstack,
                                           [enc_in, dec_out, all_poses_3d])

            # print (len(enc_in[0]))
            # print (len(poses3d[0]))
            # print (enc_in.shape)
            # print (poses3d.shape)

            # poses3dnew = []
            # for p, e in zip(poses3d, enc_in_modified):
            #   poses3dnew.append(np.insert(e, range(1, len(e)+1, 2), p[1::3]))
            # poses3d = np.array(poses3dnew)

            if convert_to_world:
                # Convert back to world coordinates
                if FLAGS.camera_frame:
                    N_CAMERAS = 4
                    N_JOINTS_H36M = 32

                    # Add global position back
                    dec_out = dec_out + np.tile(test_root_positions[key3d],
                                                [1, N_JOINTS_H36M])

                    # Load the appropriate camera
                    subj, _, sname = key3d

                    cname = sname.split('.')[1]  # <-- camera name
                    scams = {(subj, c + 1): rcams[(subj, c + 1)]
                             for c in range(N_CAMERAS)}  # cams of this subject
                    scam_idx = [
                        scams[(subj, c + 1)][-1] for c in range(N_CAMERAS)
                    ].index(cname)  # index of camera used
                    the_cam = scams[(subj,
                                     scam_idx + 1)]  # <-- the camera used
                    R, T, f, c, k, p, name = the_cam
                    assert name == cname

                    def cam2world_centered(data_3d_camframe):
                        data_3d_worldframe = cameras.camera_to_world_frame(
                            data_3d_camframe.reshape((-1, 3)), R, T)
                        data_3d_worldframe = data_3d_worldframe.reshape(
                            (-1, N_JOINTS_H36M * 3))
                        # subtract root translation
                        return data_3d_worldframe - np.tile(
                            data_3d_worldframe[:, :3], (1, N_JOINTS_H36M))

                    # Apply inverse rotation and translation
                    dec_out = cam2world_centered(dec_out)
                    poses3d = cam2world_centered(poses3d)

    poses3dnew = dec_out.copy()
    poses3dnew[:, 1::3] = poses3d[:, 1::3]
    poses3d = poses3dnew
    return enc_in, dec_out, poses3d
Ejemplo n.º 29
0
def train():
  """Train a linear model for 3d pose estimation"""

  actions = data_utils.define_actions( FLAGS.action )

  number_of_actions = len( actions )

  # Load camera parameters
  SUBJECT_IDS = [1,5,6,7,8,9,11]
  rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)

  # Load 3d data and load (or create) 2d projections
  train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 )

  # Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
  if FLAGS.use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir)
  else:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams )
  print( "done reading and normalizing data." )

  # Avoid using the GPU if requested
  device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
  with tf.Session(config=tf.ConfigProto(
    device_count=device_count,
    allow_soft_placement=True )) as sess:

    # === Create the model ===
    print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
    model = create_model( sess, actions, FLAGS.batch_size )
    model.train_writer.add_graph( sess.graph )
    print("Model created")

    #=== This is the training loop ===
    step_time, loss, val_loss = 0.0, 0.0, 0.0
    current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
    previous_losses = []

    step_time, loss = 0, 0
    current_epoch = 0
    log_every_n_batches = 100

    for _ in xrange( FLAGS.epochs ):
      current_epoch = current_epoch + 1

      # === Load training batches for one epoch ===
      encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True )
      nbatches = len( encoder_inputs )
      print("There are {0} train batches".format( nbatches ))
      start_time, loss = time.time(), 0.

      # === Loop through all the training batches ===
      for i in range( nbatches ):

        if (i+1) % log_every_n_batches == 0:
          # Print progress every log_every_n_batches batches
          print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" )

        enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
        step_loss, loss_summary, lr_summary, _ =  model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True )

        if (i+1) % log_every_n_batches == 0:
          # Log and print progress every log_every_n_batches batches
          model.train_writer.add_summary( loss_summary, current_step )
          model.train_writer.add_summary( lr_summary, current_step )
          step_time = (time.time() - start_time)
          start_time = time.time()
          print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) )

        loss += step_loss
        current_step += 1
        # === end looping through training batches ===

      loss = loss / nbatches
      print("=============================\n"
            "Global step:         %d\n"
            "Learning rate:       %.2e\n"
            "Train loss avg:      %.4f\n"
            "=============================" % (model.global_step.eval(),
            model.learning_rate.eval(), loss) )
      # === End training for an epoch ===

      # === Testing after this epoch ===
      isTraining = False

      if FLAGS.evaluateActionWise:

        print("{0:=^12} {1:=^6}".format("Action", "mm")) # line of 30 equal signs

        cum_err = 0
        for action in actions:

          print("{0:<12} ".format(action), end="")
          # Get 2d and 3d testing data for this action
          action_test_set_2d = get_action_subset( test_set_2d, action )
          action_test_set_3d = get_action_subset( test_set_3d, action )
          encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False)

          act_err, _, step_time, loss = evaluate_batches( sess, model,
            data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
            data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
            current_step, encoder_inputs, decoder_outputs )
          cum_err = cum_err + act_err

          print("{0:>6.2f}".format(act_err))

        summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
        model.test_writer.add_summary( summaries, current_step )
        print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) )))
        print("{0:=^19}".format(''))

      else:

        n_joints = 17 if not(FLAGS.predict_14) else 14
        encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)

        total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
          data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
          data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
          current_step, encoder_inputs, decoder_outputs, current_epoch )

        print("=============================\n"
              "Step-time (ms):      %.4f\n"
              "Val loss avg:        %.4f\n"
              "Val error avg (mm):  %.2f\n"
              "=============================" % ( 1000*step_time, loss, total_err ))

        for i in range(n_joints):
          # 6 spaces, right-aligned, 5 decimal places
          print("Error in joint {0:02d} (mm): {1:>5.2f}".format(i+1, joint_err[i]))
        print("=============================")

        # Log the error to tensorboard
        summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
        model.test_writer.add_summary( summaries, current_step )

      # Save the model
      print( "Saving the model... ", end="" )
      start_time = time.time()
      model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
      print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )

      # Reset global time and loss
      step_time, loss = 0, 0

      sys.stdout.flush()
Ejemplo n.º 30
0
def train():
    """Train a Sequence to sequence model on human motion"""

    actions = data_utils.define_actions(FLAGS.action)

    number_of_actions = len(actions)

    rcams, vcams = cameras.load_cameras('cameras.h5', [1, 5, 6, 7, 8, 9, 11])

    train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions, offsets_train, offsets_test = data_utils.read_3d_data(
        actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, vcams)
    if (FLAGS.use_sh):
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
            actions, FLAGS.data_dir)
    else:
        train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data(
            actions, FLAGS.data_dir, rcams, vcams)

    print("done reading and normalizing data.")

    # Limit TF to take a fraction of the GPU memory
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1)
    device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                          device_count=device_count,
                                          allow_soft_placement=True)) as sess:

        # === Create the model ===
        isTraining = True
        model = create_model(sess, isTraining, dim_to_use_3d, FLAGS.batch_size,
                             data_mean_3d, data_std_3d, dim_to_ignore_3d)
        model.train_writer.add_graph(sess.graph)
        print("Model created")

        #=== This is the training loop ===
        step_time, loss, val_loss = 0.0, 0.0, 0.0
        current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
        previous_losses = []

        step_time, loss = 0, 0
        current_epoch = 0
        for _ in xrange(FLAGS.epochs):

            current_epoch = current_epoch + 1
            # === Training for an epoch ===
            encoder_inputs, decoder_outputs = model.get_all_batches(
                train_set_2d, train_set_3d, FLAGS.camera_frame, training=True)
            nbatches = len(encoder_inputs)
            print("There are {0} train batches".format(nbatches))
            start_time, loss = time.time(), 0.
            for i in range(nbatches):
                if (i + 1) % 100 == 0:
                    print("Working on epoch {0}, batch {1} / {2}... ".format(
                        current_epoch, i + 1, nbatches),
                          end="")
                enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
                isTraining = True
                step_loss, loss_summary, lr_summary, outputs = model.step(
                    sess, enc_in, dec_out, FLAGS.dropout, isTraining)

                if (i + 1) % 100 == 0:
                    model.train_writer.add_summary(loss_summary, current_step)
                    model.train_writer.add_summary(lr_summary, current_step)
                    step_time = (time.time() - start_time)
                    start_time = time.time()
                    print("done in {0:.2f} ms".format(1000 * step_time / 100))
                loss += step_loss
                current_step += 1
            loss = loss / nbatches
            print("==========================\n"
                  "Global step:         %d\n"
                  "Learning rate:       %.2e\n"
                  "Train loss avg:      %.4f\n"
                  "==========================" %
                  (model.global_step.eval(), model.learning_rate.eval(), loss))

            # === Test for an epoch ===
            isTraining = False
            print("{0:=^12} {1:=^6}".format("Action",
                                            "mm"))  # line of 30 equal signs
            cum_err = 0
            for action in actions:
                tot_act_err = 0
                print("{0:<12} ".format(action), end="")
                # Get 2d and 3d testing data for this action
                action_test_set_2d = get_action_subset(test_set_2d, action)
                action_test_set_3d = get_action_subset(test_set_3d, action)
                action_test_set_2d_gt = []
                for key2d in action_test_set_2d.keys():
                    (subj, b, fname) = key2d
                    # keys should be the same if 3d is in camera coordinates
                    key3d = key2d if FLAGS.camera_frame else (
                        subj, b, '{0}.h5'.format(fname.split('.')[0]))
                    key3d = (subj, b,
                             fname[:-3]) if (fname.endswith('-sh')
                                             and FLAGS.camera_frame) else key3d
                    #key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
                    if fname.endswith('-sh'):
                        fname = fname[:-3]

                    enc_in = {}
                    dec_out = {}
                    enc_in[key2d] = test_set_2d[key2d]
                    dec_out[key3d] = test_set_3d[key3d]
                    pose_2d_gt_list = []
                    encoder_inputs, decoder_outputs = model.get_all_batches(
                        enc_in, dec_out, FLAGS.camera_frame, training=False)
                    act_err, _, step_time, loss = evaluate_batches(
                        sess, model, data_mean_3d, data_std_3d, dim_to_use_3d,
                        dim_to_ignore_3d, current_step, encoder_inputs,
                        decoder_outputs)
                    tot_act_err = tot_act_err + act_err
                print("{0:>6.2f}".format(tot_act_err /
                                         len(action_test_set_2d.keys())))
                cum_err = cum_err + tot_act_err / len(
                    action_test_set_2d.keys())

            print("{0:<12} {1:>6.2f}".format("Average",
                                             cum_err / float(len(actions))))
            print("{0:=^19}".format(''))
            # Log the error to tensorboard
            summaries = sess.run(
                model.err_mm_summary,
                {model.err_mm: float(cum_err / float(len(actions)))})
            model.test_writer.add_summary(summaries, current_step)

            print("Saving the model... ", end="")
            start_time = time.time()
            # Save the model
            model.saver.save(sess,
                             os.path.join(train_dir, 'checkpoint'),
                             global_step=current_step)
            print("done in {0:02f} seconds".format(time.time() - start_time))
        # Reset global time and loss
        step_time, loss = 0, 0
        sys.stdout.flush()
import data_utils
from progress.progress.bar import Bar as Bar
import utils as utils
import misc as misc
import log as log
import cameras
1
from pykalman import KalmanFilter
from sklearn.metrics import mean_squared_error 
import matplotlib.pyplot as plt

action = 'All'
actions = data_utils.define_actions( action )
cameras_path = "./data/h36m/cameras.h5"
TRAIN_TEST_ID = [1,5,6,7,8,9,11]
rcams = cameras.load_cameras(cameras_path, TRAIN_TEST_ID)

# Load data
data_dir = './data/h36m/'
camera_frame = True
predict_14 = False
# Load 3d data and load (or create) 2d projections
train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, data_dir, camera_frame, rcams, predict_14 )

# Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
#use stacked hourgalss
use_sh = False
if use_sh:
    train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, data_dir)
else:
Ejemplo n.º 32
0
import rospy
import os

os.chdir('/home/fan/3d-pose-baseline-master/')
print('reading data, please wait...')
FLAGS = tf.app.flags.FLAGS

enc_in = np.zeros((1, 64))
enc_in[0] = [0 for i in range(64)]

actions = data_utils.define_actions(FLAGS.action)

order = [15, 12, 25, 26, 27, 17, 18, 19, 1, 2, 3, 6, 7, 8]

SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11]
rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(
    actions, FLAGS.data_dir)
train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data(
    actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14)
print('######reading data finished!######')

device_count = {"GPU": 1}


def callback(data):
    if data.data == 'hello':
        print(data.data)
    else:
        global FLAGS
        global enc_in