Ejemplo n.º 1
0
def _update_energy(chunk, header, filter_name, obs_id):
    logging.debug(f'Begin _update_energy for {obs_id}.')
    # because the type for the axes are 'LINEAR', which isn't an energy type,
    # so can't use the WcsParser from caom2utils.
    disp_axis = header.get('DISPAXIS')
    naxis = header.get('NAXIS')
    if disp_axis is not None and naxis is not None and disp_axis <= naxis:
        axis = Axis(ctype='WAVE', cunit='Angstrom')
        coord_axis_1d = CoordAxis1D(axis)
        ref_coord = RefCoord(
            pix=header.get(f'CRPIX{disp_axis}'),
            val=header.get(f'CRVAL{disp_axis}'),
        )
        fn = CoordFunction1D(
            naxis=header.get(f'NAXIS{disp_axis}'),
            delta=header.get(f'CD{disp_axis}_{disp_axis}'),
            ref_coord=ref_coord,
        )
        coord_axis_1d.function = fn
        energy = SpectralWCS(axis=coord_axis_1d, specsys='TOPOCENT')
        energy.bandpass_name = filter_name
        # DB 07-08-20
        # I think the best we can do is assume that a resolution element is 2
        # pixels wide. So resolving power is the absolute value of
        # approximately CRVAL3/(2 * CD3_3)
        energy.resolving_power = abs(
            header.get(f'CRVAL{disp_axis}') /
            (2 * header.get(f'CD{disp_axis}_{disp_axis}')))
        chunk.energy = energy
        chunk.energy_axis = disp_axis
    logging.debug('End _update_energy.')
Ejemplo n.º 2
0
def _build_chunk_energy(chunk, headers):
    # DB 18-09-19
    # NEOSSat folks wanted the min/max wavelengths in the BANDPASS keyword to
    # be used as the upper/lower wavelengths.  BANDPASS = ‘4000,9000’ so
    # ref_coord1 = RefCoord(0.5, 4000) and ref_coord2 = RefCoord(1.5, 9000).
    # The WAVELENG value is not used for anything since they opted to do it
    # this way.  They interpret WAVELENG as being the wavelengh of peak
    # throughput of the system I think.

    min_wl, max_wl = _get_energy(headers[0])
    axis = CoordAxis1D(axis=Axis(ctype='WAVE', cunit='um'))
    if min_wl is not None and max_wl is not None:
        ref_coord1 = RefCoord(0.5, min_wl)
        ref_coord2 = RefCoord(1.5, max_wl)
        axis.range = CoordRange1D(ref_coord1, ref_coord2)

        # DB 24-09-19
        # If FILTER not in header, set filter_name = ‘CLEAR’
        filter_name = headers[0].get('FILTER', 'CLEAR')

        # DB 24-09-19
        # if wavelength IS None, wl = 0.6 microns, and resolving_power is
        # always determined.
        resolving_power = None
        wavelength = headers[0].get('WAVELENG', 6000)
        wl = wavelength / 1e4  # everything in microns
        resolving_power = wl / (max_wl - min_wl)
        energy = SpectralWCS(axis=axis,
                             specsys='TOPOCENT',
                             ssyssrc='TOPOCENT',
                             ssysobs='TOPOCENT',
                             bandpass_name=filter_name,
                             resolving_power=resolving_power)
        chunk.energy = energy
Ejemplo n.º 3
0
    def _update_energy(self, chunk):
        """Create SpectralWCS information using FITS headers, if available. If
        the WLEN and BANDPASS keyword values are set to the defaults, there is
        no energy information."""
        self._logger.debug('Begin _update_energy')
        mc.check_param(chunk, Chunk)

        wlen = self._headers[0].get('WLEN')
        bandpass = self._headers[0].get('BANDPASS')
        if wlen is None or wlen < 0 or bandpass is None or bandpass < 0:
            chunk.energy = None
            chunk.energy_axis = None
            self._logger.debug(
                f'Setting chunk energy to None because WLEN {wlen} and '
                f'BANDPASS {bandpass}'
            )
        else:
            naxis = CoordAxis1D(Axis('WAVE', 'um'))
            start_ref_coord = RefCoord(0.5, self.get_start_ref_coord_val(0))
            end_ref_coord = RefCoord(1.5, self.get_end_ref_coord_val(0))
            naxis.range = CoordRange1D(start_ref_coord, end_ref_coord)
            chunk.energy = SpectralWCS(
                naxis,
                specsys='TOPOCENT',
                ssysobs='TOPOCENT',
                ssyssrc='TOPOCENT',
                bandpass_name=self._headers[0].get('FILTER'),
            )
            chunk.energy_axis = None
            self._logger.debug('Setting chunk energy range (CoordRange1D).')
Ejemplo n.º 4
0
def build_chunk_energy_range(chunk, filter_name, filter_md):
    """
    Set a range axis for chunk energy using central wavelength and FWHM.
    Units are Angstroms. Axis is set to 4.

    :param chunk: Chunk to add a CoordRange1D Axis to
    :param filter_name: string to set to bandpassName
    :param filter_md: dict with a 'cw' and 'fwhm' value
    """
    # If n_axis=1 (as I guess it will be for all but processes GRACES
    # spectra now?) that means crpix=0.5 and the corresponding crval would
    # central_wl - bandpass/2.0 (i.e. the minimum wavelength).   It is fine
    # if you instead change crpix to 1.0.   I guess since the ‘range’ of
    # one pixel is 0.5 to 1.5.

    cw = ac.FilterMetadataCache.get_central_wavelength(filter_md)
    fwhm = ac.FilterMetadataCache.get_fwhm(filter_md)
    if cw is not None and fwhm is not None:
        resolving_power = ac.FilterMetadataCache.get_resolving_power(filter_md)
        axis = CoordAxis1D(axis=Axis(ctype='WAVE', cunit='Angstrom'))
        ref_coord1 = RefCoord(0.5, cw - fwhm / 2.0)
        ref_coord2 = RefCoord(1.5, cw + fwhm / 2.0)
        axis.range = CoordRange1D(ref_coord1, ref_coord2)

        energy = SpectralWCS(axis=axis,
                             specsys='TOPOCENT',
                             ssyssrc=None,
                             ssysobs=None,
                             bandpass_name=filter_name,
                             resolving_power=resolving_power)
        chunk.energy = energy
Ejemplo n.º 5
0
def _do_energy(artifact, science_file, working_dir, cfht_name):
    # PD slack 08-01-20
    # espadons is a special case because using bounds allows one to
    # define "tiles" and then the SODA cutout service can extract the
    # subset of tiles that overlap the desired region. That's the best
    # that can be done because it is not possible to create a
    # CoordFunction1D to say what the wavelength of each pixel is
    #
    # If the coverage had significant gaps (eg SCUBA or SCUBA2 from
    # JCMT)  then the extra detail in bounds would enable better
    # discovery (as the gaps would be captured in the plane metadata).
    # In the case of espadons I don't think the gaps  are significant
    # (iirc, espadons is an eschelle spectrograph but I don't recall
    # whether the discontinuity between eschelle was a small gap or an
    # overlap)
    #
    # So: bounds provides more detail and it can in principle improve
    # data discovery (if gaps) and enable extraction of subsections of
    # the spectrum via the SODA service. Espadons was one of the use
    # cases that justified having bounds there

    # SF slack 08-01-20
    # We need the information that is contained in bounds. Gaps need
    # to be captured. So keep bounds. If you decide to remove range,
    # then advanced users would have to dig in the info to understand
    # range is first and last bounds.

    # read in the complete fits file, including the data
    fqn = f'{working_dir}/{science_file}'
    logging.info(f'Reading ESPaDOnS energy data from {fqn}.')
    hdus = ac.read_fits_data(fqn)
    wave = hdus[0].data[0, :]
    axis = Axis('WAVE', 'nm')
    coord_bounds = ac.build_chunk_energy_bounds(wave, axis)
    coord_axis = CoordAxis1D(axis=axis, bounds=coord_bounds)
    params = {'header': hdus[0].header, 'uri': artifact.uri}
    resolving_power = main_app.get_espadons_energy_resolving_power(params)
    chunk = artifact.parts['0'].chunks[0]
    chunk.energy = SpectralWCS(coord_axis,
                               specsys='TOPOCENT',
                               ssyssrc='TOPOCENT',
                               resolving_power=resolving_power)
    chunk.energy_axis = 1
    chunk.naxis = hdus[0].header.get('NAXIS')
    if (chunk.naxis is not None and chunk.naxis == 2
            and chunk.observable is not None):
        chunk.observable_axis = 2
        chunk.position_axis_1 = None
        chunk.position_axis_2 = None
        chunk.time_axis = None
        chunk.custom_axis = None
        if cfht_name.suffix != 'p':
            chunk.polarization_axis = None
    hdus.close()
    return 1
Ejemplo n.º 6
0
def build_energy():
    # units are nm
    min = 400
    max = 800
    central_wl = (min + max) / 2.0  # = 1200.0 / 2.0 == 600.0 nm
    fwhm = (max - min)
    ref_coord1 = RefCoord(0.5, central_wl - fwhm / 2.0)  # == 100.0 nm
    ref_coord2 = RefCoord(1.5, central_wl + fwhm / 2.0)  # == 500.0 nm
    axis = CoordAxis1D(axis=Axis(ctype='WAVE', cunit='nm'))
    axis.range = CoordRange1D(ref_coord1, ref_coord2)
    energy = SpectralWCS(axis=axis,
                         specsys='TOPOCENT',
                         ssyssrc='TOPOCENT',
                         ssysobs='TOPOCENT',
                         bandpass_name='CLEAR')
    return energy
Ejemplo n.º 7
0
def test_augment_artifact_bounds_range_from_blueprint():
    test_blueprint = ObsBlueprint(energy_axis=1,
                                  time_axis=2,
                                  polarization_axis=3,
                                  position_axes=(4, 5))
    test_blueprint.set('Chunk.energy.axis.range.start.pix', '145.0')
    test_blueprint.set('Chunk.energy.axis.range.start.val', '-60000.0')
    test_blueprint.set('Chunk.energy.axis.range.end.pix', '-824.46002')
    test_blueprint.set('Chunk.energy.axis.range.end.val', '1')
    test_blueprint.set('Chunk.time.axis.range.start.pix', '145.0')
    test_blueprint.set('Chunk.time.axis.range.start.val', '-60000.0')
    test_blueprint.set('Chunk.time.axis.range.end.pix', '-824.46002')
    test_blueprint.set('Chunk.time.axis.range.end.val', '1')
    test_blueprint.set('Chunk.polarization.axis.range.start.pix', '145.0')
    test_blueprint.set('Chunk.polarization.axis.range.start.val', '-60000.0')
    test_blueprint.set('Chunk.polarization.axis.range.end.pix', '-824.46002')
    test_blueprint.set('Chunk.polarization.axis.range.end.val', '1')
    test_blueprint.set('Chunk.position.axis.range.start.coord1.pix', '145.0')
    test_blueprint.set('Chunk.position.axis.range.start.coord1.val',
                       '-60000.0')
    test_blueprint.set('Chunk.position.axis.range.end.coord1.pix',
                       '-824.46002')
    test_blueprint.set('Chunk.position.axis.range.end.coord1.val', '1')
    test_blueprint.set('Chunk.position.axis.range.start.coord2.pix', '145.0')
    test_blueprint.set('Chunk.position.axis.range.start.coord2.val',
                       '-60000.0')
    test_blueprint.set('Chunk.position.axis.range.end.coord2.pix',
                       '-824.46002')
    test_blueprint.set('Chunk.position.axis.range.end.coord2.val', '1')
    test_fitsparser = FitsParser(sample_file_4axes,
                                 test_blueprint,
                                 uri='ad:TEST/test_blueprint')
    test_chunk = Chunk()
    test_chunk.energy = SpectralWCS(CoordAxis1D(Axis('WAVE', 'm')), 'TOPOCENT')
    test_chunk.time = TemporalWCS(CoordAxis1D(Axis('TIME', 'd')))
    test_chunk.polarization = PolarizationWCS(CoordAxis1D(Axis('STOKES')))
    test_chunk.position = SpatialWCS(
        CoordAxis2D(Axis('RA', 'deg'), Axis('DEC', 'deg')))
    test_fitsparser._try_range_with_blueprint(test_chunk, 0)

    assert test_chunk.energy.axis.range is not None, \
        'chunk.energy.axis.range should be declared'
    assert test_chunk.time.axis.range is not None, \
        'chunk.time.axis.range should be declared'
    assert test_chunk.polarization.axis.range is not None, \
        'chunk.polarization.axis.range should be declared'
    assert test_chunk.position.axis.range is not None, \
        'chunk.position.axis.range should be declared'
    ex = _get_from_str_xml(EXPECTED_ENERGY_RANGE_BOUNDS_XML,
                           ObservationReader()._get_spectral_wcs, 'energy')
    assert ex is not None, \
        'energy string from expected output should be declared'
    result = get_differences(ex, test_chunk.energy)
    assert result is None

    ex = _get_from_str_xml(EXPECTED_TIME_RANGE_BOUNDS_XML,
                           ObservationReader()._get_temporal_wcs, 'time')
    assert ex is not None, \
        'time string from expected output should be declared'
    result = get_differences(ex, test_chunk.time)
    assert result is None

    ex = _get_from_str_xml(EXPECTED_POL_RANGE_BOUNDS_XML,
                           ObservationReader()._get_polarization_wcs,
                           'polarization')
    assert ex is not None, \
        'polarization string from expected output should be declared'
    result = get_differences(ex, test_chunk.polarization)
    assert result is None

    ex = _get_from_str_xml(EXPECTED_POS_RANGE_BOUNDS_XML,
                           ObservationReader()._get_spatial_wcs, 'position')
    assert ex is not None, \
        'position string from expected output should be declared'
    result = get_differences(ex, test_chunk.position)
    assert result is None