def main(): rospy.init_node('capsen_benchmark', anonymous=True) basefolder = os.getenv('APCDATA_BASE') + '/bagfiles/vision_dataset/Bin0/' pc_topic = '/realsense/depth_registered/points' bin_num = 0 mode = 1 # 0 for kinect, 1 for realsense item_names = get_immediate_subdirectories(basefolder) pubTf = rospy.Publisher('tf', TFMessage, queue_size=10) pubPointCloud = rospy.Publisher(pc_topic, PointCloud2, queue_size=10) capsen.init() for item_name in item_names: object_folder = os.path.join(basefolder, item_name) pose_types = get_immediate_subdirectories(object_folder) for pose_type in pose_types: posefolder = os.path.join(object_folder, pose_type) bagFilenames = get_immediate_files(posefolder) while True: #for bagFilename in bagFilenames: bagFilename = bagFilenames[0] bagpath = os.path.join(posefolder, bagFilename) bag = rosbag.Bag(bagpath) #print bagpath for topic, msg, t in bag.read_messages(topics=['/tf']): if topic == '/tf': rospy.sleep(0.003) for i in range(len(msg.transforms)): msg.transforms[i].header.stamp = rospy.Time.now() pubTf.publish(msg)
def main(): rospy.init_node('capsen_benchmark', anonymous=True) basefolder = os.getenv('APCDATA_BASE') + '/bagfiles/vision_dataset/Bin0/' outputfile = os.getenv('APCDATA_BASE') + '/bagfiles/vision_dataset/Bin0/result.json' pc_topic = '/realsense/depth_registered/points' bin_num = 0 mode = 1 # 0 for kinect, 1 for realsense item_names = get_immediate_subdirectories(basefolder) pubTf = rospy.Publisher('tf', TFMessage, queue_size=10) pubPointCloud = rospy.Publisher(pc_topic, PointCloud2, queue_size=1) capsen.init() listener = tf.TransformListener() rospy.sleep(0.1) result = [] for item_name in item_names: #os.system("echo '%s' > %s/capsen_vision/models/models.txt" % (item_name, os.getenv('APCDATA_BASE')) ) # hack object_folder = os.path.join(basefolder, item_name) pose_types = get_immediate_subdirectories(object_folder) for pose_type in pose_types: posefolder = os.path.join(object_folder, pose_type) bagFilenames = get_immediate_files(posefolder) for bagFilename in bagFilenames: bagpath = os.path.join(posefolder, bagFilename) bag = rosbag.Bag(bagpath) print bagpath cnt = 0 for topic, msg, t in bag.read_messages(topics=[pc_topic]): for i in range(3): msg.header.stamp = rospy.Time.now() pubPointCloud.publish(msg) rospy.sleep(0.1) rospy.sleep(0.5) pose = detectOneObject(item_name, [item_name], bin_num, mode) if pose is not None: print item_name, find_object_pose_type(item_name, pose), pose_type, bagFilename, cnt result.append([item_name, pose, find_object_pose_type(item_name, pose), pose_type, bagFilename, cnt]) else: print item_name, 'None', pose_type, bagFilename, cnt result.append([item_name, None, None, pose_type, bagFilename, cnt]) cnt += 1 #raw_input('press enter to continue') with open(outputfile, 'w') as outfile: json.dump(result, outfile) os.system("cp %s/capsen_vision/models/models_full.txt %s/capsen_vision/models/models.txt" % (os.getenv('APCDATA_BASE'), os.getenv('APCDATA_BASE'))) # hack
def main(): rospy.init_node('capsen_benchmark', anonymous=True) basefolder = os.getenv('APCDATA_BASE') + '/bagfiles/vision_dataset/Bin0/' outputfile = os.getenv( 'APCDATA_BASE') + '/bagfiles/vision_dataset/Bin0/result.json' pc_topic = '/realsense/depth_registered/points' bin_num = 0 mode = 1 # 0 for kinect, 1 for realsense item_names = get_immediate_subdirectories(basefolder) pubTf = rospy.Publisher('tf', TFMessage, queue_size=10) pubPointCloud = rospy.Publisher(pc_topic, PointCloud2, queue_size=1) capsen.init() listener = tf.TransformListener() rospy.sleep(0.1) result = [] for item_name in item_names: #os.system("echo '%s' > %s/capsen_vision/models/models.txt" % (item_name, os.getenv('APCDATA_BASE')) ) # hack object_folder = os.path.join(basefolder, item_name) pose_types = get_immediate_subdirectories(object_folder) for pose_type in pose_types: posefolder = os.path.join(object_folder, pose_type) bagFilenames = get_immediate_files(posefolder) for bagFilename in bagFilenames: bagpath = os.path.join(posefolder, bagFilename) bag = rosbag.Bag(bagpath) print bagpath cnt = 0 for topic, msg, t in bag.read_messages(topics=[pc_topic]): for i in range(3): msg.header.stamp = rospy.Time.now() pubPointCloud.publish(msg) rospy.sleep(0.1) rospy.sleep(0.5) pose = detectOneObject(item_name, [item_name], bin_num, mode) if pose is not None: print item_name, find_object_pose_type( item_name, pose), pose_type, bagFilename, cnt result.append([ item_name, pose, find_object_pose_type(item_name, pose), pose_type, bagFilename, cnt ]) else: print item_name, 'None', pose_type, bagFilename, cnt result.append([ item_name, None, None, pose_type, bagFilename, cnt ]) cnt += 1 #raw_input('press enter to continue') with open(outputfile, 'w') as outfile: json.dump(result, outfile) os.system( "cp %s/capsen_vision/models/models_full.txt %s/capsen_vision/models/models.txt" % (os.getenv('APCDATA_BASE'), os.getenv('APCDATA_BASE'))) # hack
def main(): rospy.init_node("capsen_benchmark", anonymous=True) basefolder = os.getenv("APCDATA_BASE") + "/bagfiles/vision_dataset/Bin0_Kinect/" outputfile = os.getenv("APCDATA_BASE") + "/bagfiles/vision_dataset/Bin0_Kinect/result.json" pc_topics = ["/kinect2_1/depth_highres/points", "/kinect2_2/depth_highres/points"] bin_num = 0 mode = 0 # 0 for kinect, 1 for realsense item_names = get_immediate_subdirectories(basefolder) pubTf = rospy.Publisher("tf", TFMessage, queue_size=10) pubPointCloud = {} pubPointCloud[pc_topics[0]] = rospy.Publisher(pc_topics[0], PointCloud2, queue_size=1) pubPointCloud[pc_topics[1]] = rospy.Publisher(pc_topics[1], PointCloud2, queue_size=1) capsen.init() listener = tf.TransformListener() rospy.sleep(0.1) result = [] for item_name in item_names: os.system("echo '%s' > /home/mcube/apcdata/capsen_vision/models/models.txt" % item_name) # hack object_folder = os.path.join(basefolder, item_name) pose_types = get_immediate_subdirectories(object_folder) for pose_type in pose_types: posefolder = os.path.join(object_folder, pose_type) bagFilenames = get_immediate_files(posefolder) for bagFilename in bagFilenames: bagpath = os.path.join(posefolder, bagFilename) bag = rosbag.Bag(bagpath) print bagpath cnt = 0 flags = {} for topic, msg, t in bag.read_messages(topics=pc_topics): for i in range(3): msg.header.stamp = rospy.Time.now() pubPointCloud[topic].publish(msg) rospy.sleep(0.1) rospy.sleep(0.5) flags[topic] = True if pc_topics[0] in flags and pc_topics[1] in flags: pose = detectOneObject(item_name, [item_name], bin_num, mode) if pose is not None: print item_name, find_object_pose_type(item_name, pose), pose_type, bagFilename, cnt result.append( [item_name, pose, find_object_pose_type(item_name, pose), pose_type, bagFilename, cnt] ) else: print item_name, "None", pose_type, bagFilename, cnt result.append([item_name, None, None, pose_type, bagFilename, cnt]) cnt += 1 # raw_input('press enter to continue') with open(outputfile, "w") as outfile: json.dump(result, outfile) os.system( "cp /home/mcube/apcdata/capsen_vision/models/models_full.txt /home/mcube/apcdata/capsen_vision/models/models.txt" ) # hack