def map_slp_to_rand_angles(self, original_pose, alter_angles=True):

        R_root = libKinematics.matrix_from_dir_cos_angles(original_pose[0:3])

        flip_root_euler = np.pi
        flip_root_R = libKinematics.eulerAnglesToRotationMatrix(
            [flip_root_euler, 0.0, 0.0])

        root_rot_rand_R = libKinematics.eulerAnglesToRotationMatrix(
            [0.0, 0.0, 0.0])  # randomize the root rotation
        # root_rot_rand_R = libKinematics.eulerAnglesToRotationMatrix([0.0,  0.0, 0.0]) #randomize the root rotation

        dir_cos_root = libKinematics.dir_cos_angles_from_matrix(
            np.matmul(root_rot_rand_R, np.matmul(R_root, flip_root_R)))

        # R_root2 = libKinematics.matrix_from_dir_cos_angles([original_pose[0]-4*np.pi, original_pose[1], original_pose[2]])
        # dir_cos_root2 = libKinematics.dir_cos_angles_from_matrix(R_root2)
        # print('eulers2', libKinematics.rotationMatrixToEulerAngles(R_root2))

        self.m.pose[0] = dir_cos_root[0]
        self.m.pose[1] = dir_cos_root[1]
        self.m.pose[2] = dir_cos_root[2]

        for i in range(3, 72):
            self.m.pose[i] = original_pose[i]

        from capsule_body import get_capsules, joint2name, rots0
        capsules = get_capsules(self.m)
        joint2name = joint2name
        rots0 = rots0
        print len(capsules)

        return self.m, capsules, joint2name, rots0
    def map_random_selection_to_smpl_angles(self, alter_angles):
        if alter_angles == True:
            selection_r_leg = ProcessYashData().sample_angles('r_leg')
            self.m.pose[6] = selection_r_leg['rG_ext']
            self.m.pose[7] = selection_r_leg['rG_yaw']  #/2
            self.m.pose[8] = selection_r_leg['rG_abd']

            self.m.pose[15] = selection_r_leg['rK']
            #self.m.pose[16] = selection_r_leg['rG_yaw']/2

            selection_l_leg = ProcessYashData().sample_angles('l_leg')
            self.m.pose[3] = selection_l_leg['lG_ext']
            self.m.pose[4] = selection_l_leg['lG_yaw']  #/2
            self.m.pose[5] = selection_l_leg['lG_abd']

            self.m.pose[12] = selection_l_leg['lK']
            #self.m.pose[13] = selection_l_leg['lG_yaw']/2

            selection_r_arm = ProcessYashData().sample_angles('r_arm')
            self.m.pose[51] = selection_r_arm['rS_roll'] * 2 / 3
            self.m.pose[52] = selection_r_arm['rS_yaw'] * 2 / 3
            self.m.pose[53] = selection_r_arm['rS_pitch'] * 2 / 3
            self.m.pose[42] = selection_r_arm['rS_roll'] * 1 / 3
            self.m.pose[43] = selection_r_arm['rS_yaw'] * 1 / 3
            self.m.pose[44] = selection_r_arm['rS_pitch'] * 1 / 3

            self.m.pose[58] = selection_r_arm['rE']

            selection_l_arm = ProcessYashData().sample_angles('l_arm')
            self.m.pose[48] = selection_l_arm['lS_roll'] * 2 / 3
            self.m.pose[49] = selection_l_arm['lS_yaw'] * 2 / 3
            self.m.pose[50] = selection_l_arm['lS_pitch'] * 2 / 3
            self.m.pose[39] = selection_l_arm['lS_roll'] * 1 / 3
            self.m.pose[40] = selection_l_arm['lS_yaw'] * 1 / 3
            self.m.pose[41] = selection_l_arm['lS_pitch'] * 1 / 3

            self.m.pose[55] = selection_l_arm['lE']

        #self.m.pose[51] = selection_r
        from capsule_body import get_capsules, joint2name, rots0
        capsules = get_capsules(self.m)
        joint2name = joint2name
        rots0 = rots0
        print len(capsules)

        #put these capsules into dart based on these angles. Make Dart joints only as necessary.
        #Use the positions found in dart to update positions in FleX. Do not use angles in Flex
        #repeat: do not need a forward kinematics model in FleX! Just need the capsule positions and radii. Can potentially get rotation from the Capsule end positions.
        #Find IK solution at the very end.

        return self.m, capsules, joint2name, rots0
Ejemplo n.º 3
0
    def on_changed(self, which):
        if 'regs' in which:
            self.length_regs = self.regs['betas2lens']
            self.rad_regs = self.regs['betas2rads']

        if 'betas' in which:
            if not hasattr(self, 'capsules'):
                self.capsules = get_capsules(self.model,
                                             wrt_betas=self.betas,
                                             length_regs=self.length_regs,
                                             rad_regs=self.rad_regs)

            self.update_capsules_and_centers()

        if 'pose' in which:
            self.update_pose()
    def map_random_selection_to_smpl_angles(self, alter_angles):
        if alter_angles == True:
            selection_r_leg = ProcessYashData().sample_angles('r_leg')
            self.m.pose[6] = selection_r_leg['rG_ext']
            self.m.pose[7] = selection_r_leg['rG_yaw']  #/2
            self.m.pose[8] = selection_r_leg['rG_abd']

            self.m.pose[15] = selection_r_leg['rK']
            #self.m.pose[16] = selection_r_leg['rG_yaw']/2

            selection_l_leg = ProcessYashData().sample_angles('l_leg')
            self.m.pose[3] = selection_l_leg['lG_ext']
            self.m.pose[4] = selection_l_leg['lG_yaw']  #/2
            self.m.pose[5] = selection_l_leg['lG_abd']

            self.m.pose[12] = selection_l_leg['lK']
            #self.m.pose[13] = selection_l_leg['lG_yaw']/2

            selection_r_arm = ProcessYashData().sample_angles('r_arm')
            self.m.pose[51] = selection_r_arm['rS_roll'] * 2 / 3
            self.m.pose[52] = selection_r_arm['rS_yaw'] * 2 / 3
            self.m.pose[53] = selection_r_arm['rS_pitch'] * 2 / 3
            self.m.pose[42] = selection_r_arm['rS_roll'] * 1 / 3
            self.m.pose[43] = selection_r_arm['rS_yaw'] * 1 / 3
            self.m.pose[44] = selection_r_arm['rS_pitch'] * 1 / 3

            self.m.pose[58] = selection_r_arm['rE']

            selection_l_arm = ProcessYashData().sample_angles('l_arm')
            self.m.pose[48] = selection_l_arm['lS_roll'] * 2 / 3
            self.m.pose[49] = selection_l_arm['lS_yaw'] * 2 / 3
            self.m.pose[50] = selection_l_arm['lS_pitch'] * 2 / 3
            self.m.pose[39] = selection_l_arm['lS_roll'] * 1 / 3
            self.m.pose[40] = selection_l_arm['lS_yaw'] * 1 / 3
            self.m.pose[41] = selection_l_arm['lS_pitch'] * 1 / 3

            self.m.pose[55] = selection_l_arm['lE']

        #self.m.pose[51] = selection_r
        from capsule_body import get_capsules, joint2name, rots0
        capsules = get_capsules(self.m)
        joint2name = joint2name
        rots0 = rots0

        return self.m, capsules, joint2name, rots0
    def map_shuffled_yash_to_smpl_angles(self,
                                         posture,
                                         shiftUD,
                                         alter_angles=True):
        angle_type = "angle_axis"
        #angle_type = "euler"

        #limits are relative to left side of body. some joints for right side need flip
        '''
        dircos_limit_lay = {}
        dircos_limit_lay['hip0_L'] = -1.3597488648299256
        dircos_limit_lay['hip0_U'] = 0.07150907780435195
        dircos_limit_lay['hip1_L'] = -1.1586383564647427
        dircos_limit_lay['hip1_U'] = 0.9060547654972676
        dircos_limit_lay['hip2_L'] = -0.22146805085504204
        dircos_limit_lay['hip2_U'] = 0.7070043169765721
        dircos_limit_lay['knee_L'] = 0.0
        dircos_limit_lay['knee_U'] = 2.6656374963467337
        dircos_limit_lay['shd0_L'] = -1.3357882970793375
        dircos_limit_lay['shd0_U'] = 1.580579714602293
        dircos_limit_lay['shd1_L'] = -1.545407583212041
        dircos_limit_lay['shd1_U'] = 1.0052006799247593
        dircos_limit_lay['shd2_L'] = -1.740132642542865
        dircos_limit_lay['shd2_U'] = 2.1843225295849584
        dircos_limit_lay['elbow_L'] = -2.359569981489685
        dircos_limit_lay['elbow_U'] = 0.0


        dircos_limit_sit = {}
        dircos_limit_sit['hip0_L'] = -2.655719256295683
        dircos_limit_sit['hip0_U'] = -1.0272376612196454
        dircos_limit_sit['hip1_L'] = -0.9042010441370677
        dircos_limit_sit['hip1_U'] = 0.9340170076795724
        dircos_limit_sit['hip2_L'] = -0.37290106435540205
        dircos_limit_sit['hip2_U'] = 0.9190375825276169
        dircos_limit_sit['knee_L'] = 0.0
        dircos_limit_sit['knee_U'] = 2.6869091212979197
        dircos_limit_sit['shd0_L'] = -1.5525790052790263
        dircos_limit_sit['shd0_U'] = 0.6844121077167088
        dircos_limit_sit['shd1_L'] = -0.7791830995457885
        dircos_limit_sit['shd1_U'] = 1.0243644544117376
        dircos_limit_sit['shd2_L'] = -1.5283559130498783
        dircos_limit_sit['shd2_U'] = 1.1052120105774226
        dircos_limit_sit['elbow_L'] = -2.4281310593630705
        dircos_limit_sit['elbow_U'] = 0.0
        '''
        '''
        dircos_limit = {}
        dircos_limit['hip0_L'] = -2.655719256295683
        dircos_limit['hip0_U'] = 0.07150907780435195
        dircos_limit['hip1_L'] = -1.1586383564647427
        dircos_limit['hip1_U'] = 0.9340170076795724
        dircos_limit['hip2_L'] = -0.37290106435540205
        dircos_limit['hip2_U'] = 0.9190375825276169
        dircos_limit['knee_L'] = 0.0
        dircos_limit['knee_U'] = 2.6869091212979197
        dircos_limit['shd0_L'] = -1.5525790052790263
        dircos_limit['shd0_U'] = 1.580579714602293
        dircos_limit['shd1_L'] = -1.545407583212041
        dircos_limit['shd1_U'] = 1.0243644544117376
        dircos_limit['shd2_L'] = -1.740132642542865
        dircos_limit['shd2_U'] = 2.1843225295849584
        dircos_limit['elbow_L'] = -2.4281310593630705
        dircos_limit['elbow_U'] = 0.0 
        '''

        dircos_limit = {}
        dircos_limit['hip0_L'] = -2.7443260550003967
        dircos_limit['hip0_U'] = -0.14634814003149707
        dircos_limit['hip1_L'] = -1.0403111466710133
        dircos_limit['hip1_U'] = 1.1185343875601006
        dircos_limit['hip2_L'] = -0.421484532214729
        dircos_limit['hip2_U'] = 0.810063927501682
        dircos_limit['knee_L'] = 0.0
        dircos_limit['knee_U'] = 2.7020409229712863
        dircos_limit['shd0_L'] = -1.8674195346872975
        dircos_limit['shd0_U'] = 1.410545172086535
        dircos_limit['shd1_L'] = -1.530112726921327
        dircos_limit['shd1_U'] = 1.2074724617209949
        dircos_limit['shd2_L'] = -1.9550515937478927
        dircos_limit['shd2_U'] = 1.7587935205169856
        dircos_limit['elbow_L'] = -2.463868908637374
        dircos_limit['elbow_U'] = 0.0

        #if posture == "lay":
        #     dircos_limit = dircos_limit_lay
        # elif posture == "sit":
        #     dircos_limit = dircos_limit_sit

        if alter_angles == True:

            try:
                entry = self.angles_data.pop()
            except:
                print "############################# RESAMPLING !! #################################"
                if posture == "sit":
                    filename = self.filepath_prefix + '/data/init_ik_solutions/all_sit_angles_side_up.p'
                else:
                    filename = self.filepath_prefix + '/data/init_ik_solutions/all_lay_angles_side_up.p'
                with open(filename, 'rb') as fp:
                    self.angles_data = pickle.load(fp)
                shuffle(self.angles_data)
                entry = self.angles_data.pop()

            if posture == "sit":
                if shiftUD >= 0.1:
                    self.m.pose[0] = np.pi / 3
                    self.m.pose[9] = 0.0
                    self.m.pose[18] = 0.0
                    self.m.pose[27] = 0.0
                elif 0.0 <= shiftUD < 0.1:
                    self.m.pose[0] = np.pi / 6
                    self.m.pose[9] = np.pi / 6
                    self.m.pose[18] = 0.0
                    self.m.pose[27] = 0.0
                elif -0.1 <= shiftUD < 0.0:
                    self.m.pose[0] = np.pi / 9
                    self.m.pose[9] = np.pi / 9
                    self.m.pose[18] = np.pi / 9
                    self.m.pose[27] = 0.0
                elif shiftUD < -0.1:
                    self.m.pose[0] = np.pi / 12
                    self.m.pose[9] = np.pi / 12
                    self.m.pose[18] = np.pi / 12
                    self.m.pose[27] = np.pi / 12
                self.m.pose[36] = np.pi / 12
                self.m.pose[45] = np.pi / 12

            R_root = libKinematics.eulerAnglesToRotationMatrix(
                [-float(self.m.pose[0]), 0.0, 0.0])

            R_l_hip_rod = libKinematics.matrix_from_dir_cos_angles(
                entry['l_hip_' + angle_type])
            R_r_hip_rod = libKinematics.matrix_from_dir_cos_angles(
                entry['r_hip_' + angle_type])

            R_l = np.matmul(R_root, R_l_hip_rod)
            R_r = np.matmul(R_root, R_r_hip_rod)

            new_left_hip = libKinematics.dir_cos_angles_from_matrix(R_l)
            new_right_hip = libKinematics.dir_cos_angles_from_matrix(R_r)

            flip_leftright = random.choice([True, False])

            while True:
                self.reset_pose = False
                print R_root, self.m.pose[0], shiftUD
                print entry['l_hip_' + angle_type], new_left_hip
                print entry['r_hip_' + angle_type], new_right_hip
                if flip_leftright == False:
                    #print "WORKING WITH:, ", new_left_hip[0], dircos_limit['hip0_L'], dircos_limit['hip0_U']
                    #time.sleep(2)
                    self.m.pose[3] = generator.get_noisy_angle(
                        new_left_hip[0], dircos_limit['hip0_L'],
                        dircos_limit['hip0_U'])
                    self.m.pose[4] = generator.get_noisy_angle(
                        new_left_hip[1], dircos_limit['hip1_L'],
                        dircos_limit['hip1_U'])
                    self.m.pose[5] = generator.get_noisy_angle(
                        new_left_hip[2], dircos_limit['hip2_L'],
                        dircos_limit['hip2_U'])
                    self.m.pose[12] = generator.get_noisy_angle(
                        entry['l_knee'][0], dircos_limit['knee_L'],
                        dircos_limit['knee_U'])

                    self.m.pose[6] = generator.get_noisy_angle(
                        new_right_hip[0], dircos_limit['hip0_L'],
                        dircos_limit['hip0_U'])
                    self.m.pose[7] = generator.get_noisy_angle(
                        new_right_hip[1], -dircos_limit['hip1_U'],
                        -dircos_limit['hip1_L'])
                    self.m.pose[8] = generator.get_noisy_angle(
                        new_right_hip[2], -dircos_limit['hip2_U'],
                        -dircos_limit['hip2_L'])
                    self.m.pose[15] = generator.get_noisy_angle(
                        entry['r_knee'][0], dircos_limit['knee_L'],
                        dircos_limit['knee_U'])

                    self.m.pose[39] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][0] * 1 / 3,
                        dircos_limit['shd0_L'] * 1 / 3,
                        dircos_limit['shd0_U'] * 1 / 3)
                    self.m.pose[40] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][1] * 1 / 3,
                        dircos_limit['shd1_L'] * 1 / 3,
                        dircos_limit['shd1_U'] * 1 / 3)
                    self.m.pose[41] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][2] * 1 / 3,
                        dircos_limit['shd2_L'] * 1 / 3,
                        dircos_limit['shd2_U'] * 1 / 3)
                    self.m.pose[48] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][0] * 2 / 3,
                        dircos_limit['shd0_L'] * 2 / 3,
                        dircos_limit['shd0_U'] * 2 / 3)
                    self.m.pose[49] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][1] * 2 / 3,
                        dircos_limit['shd1_L'] * 2 / 3,
                        dircos_limit['shd1_U'] * 2 / 3)
                    self.m.pose[50] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][2] * 2 / 3,
                        dircos_limit['shd2_L'] * 2 / 3,
                        dircos_limit['shd2_U'] * 2 / 3)
                    self.m.pose[55] = generator.get_noisy_angle(
                        entry['l_elbow'][1], dircos_limit['elbow_L'],
                        dircos_limit['elbow_U'])

                    self.m.pose[42] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][0] * 1 / 3,
                        dircos_limit['shd0_L'] * 1 / 3,
                        dircos_limit['shd0_U'] * 1 / 3)
                    self.m.pose[43] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][1] * 1 / 3,
                        -dircos_limit['shd1_U'] * 1 / 3,
                        -dircos_limit['shd1_L'] * 1 / 3)
                    self.m.pose[44] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][2] * 1 / 3,
                        -dircos_limit['shd2_U'] * 1 / 3,
                        -dircos_limit['shd2_L'] * 1 / 3)
                    self.m.pose[51] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][0] * 2 / 3,
                        dircos_limit['shd0_L'] * 2 / 3,
                        dircos_limit['shd0_U'] * 2 / 3)
                    self.m.pose[52] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][1] * 2 / 3,
                        -dircos_limit['shd1_U'] * 2 / 3,
                        -dircos_limit['shd1_L'] * 2 / 3)
                    self.m.pose[53] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][2] * 2 / 3,
                        -dircos_limit['shd2_U'] * 2 / 3,
                        -dircos_limit['shd2_L'] * 2 / 3)
                    self.m.pose[58] = generator.get_noisy_angle(
                        entry['r_elbow'][1], -dircos_limit['elbow_U'],
                        -dircos_limit['elbow_L'])

                elif flip_leftright == True:

                    self.m.pose[3] = generator.get_noisy_angle(
                        new_right_hip[0], dircos_limit['hip0_L'],
                        dircos_limit['hip0_U'])
                    self.m.pose[4] = generator.get_noisy_angle(
                        -new_right_hip[1], dircos_limit['hip1_L'],
                        dircos_limit['hip1_U'])
                    self.m.pose[5] = generator.get_noisy_angle(
                        -new_right_hip[2], dircos_limit['hip2_L'],
                        dircos_limit['hip2_U'])
                    self.m.pose[12] = generator.get_noisy_angle(
                        entry['r_knee'][0], dircos_limit['knee_L'],
                        dircos_limit['knee_U'])

                    self.m.pose[6] = generator.get_noisy_angle(
                        new_left_hip[0], dircos_limit['hip0_L'],
                        dircos_limit['hip0_U'])
                    self.m.pose[7] = generator.get_noisy_angle(
                        -new_left_hip[1], -dircos_limit['hip1_U'],
                        -dircos_limit['hip1_L'])
                    self.m.pose[8] = generator.get_noisy_angle(
                        -new_left_hip[2], -dircos_limit['hip2_U'],
                        -dircos_limit['hip2_L'])
                    self.m.pose[15] = generator.get_noisy_angle(
                        entry['l_knee'][0], dircos_limit['knee_L'],
                        dircos_limit['knee_U'])

                    self.m.pose[39] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][0] * 1 / 3,
                        dircos_limit['shd0_L'] * 1 / 3,
                        dircos_limit['shd0_U'] * 1 / 3)
                    self.m.pose[40] = generator.get_noisy_angle(
                        -entry['r_shoulder_' + angle_type][1] * 1 / 3,
                        dircos_limit['shd1_L'] * 1 / 3,
                        dircos_limit['shd1_U'] * 1 / 3)
                    self.m.pose[41] = generator.get_noisy_angle(
                        -entry['r_shoulder_' + angle_type][2] * 1 / 3,
                        dircos_limit['shd2_L'] * 1 / 3,
                        dircos_limit['shd2_U'] * 1 / 3)
                    self.m.pose[48] = generator.get_noisy_angle(
                        entry['r_shoulder_' + angle_type][0] * 2 / 3,
                        dircos_limit['shd0_L'] * 2 / 3,
                        dircos_limit['shd0_U'] * 2 / 3)
                    self.m.pose[49] = generator.get_noisy_angle(
                        -entry['r_shoulder_' + angle_type][1] * 2 / 3,
                        dircos_limit['shd1_L'] * 2 / 3,
                        dircos_limit['shd1_U'] * 2 / 3)
                    self.m.pose[50] = generator.get_noisy_angle(
                        -entry['r_shoulder_' + angle_type][2] * 2 / 3,
                        dircos_limit['shd2_L'] * 2 / 3,
                        dircos_limit['shd2_U'] * 2 / 3)
                    self.m.pose[55] = generator.get_noisy_angle(
                        -entry['r_elbow'][1], dircos_limit['elbow_L'],
                        dircos_limit['elbow_U'])

                    self.m.pose[42] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][0] * 1 / 3,
                        dircos_limit['shd0_L'] * 1 / 3,
                        dircos_limit['shd0_U'] * 1 / 3)
                    self.m.pose[43] = generator.get_noisy_angle(
                        -entry['l_shoulder_' + angle_type][1] * 1 / 3,
                        -dircos_limit['shd1_U'] * 1 / 3,
                        -dircos_limit['shd1_L'] * 1 / 3)
                    self.m.pose[44] = generator.get_noisy_angle(
                        -entry['l_shoulder_' + angle_type][2] * 1 / 3,
                        -dircos_limit['shd2_U'] * 1 / 3,
                        -dircos_limit['shd2_L'] * 1 / 3)
                    self.m.pose[51] = generator.get_noisy_angle(
                        entry['l_shoulder_' + angle_type][0] * 2 / 3,
                        dircos_limit['shd0_L'] * 2 / 3,
                        dircos_limit['shd0_U'] * 2 / 3)
                    self.m.pose[52] = generator.get_noisy_angle(
                        -entry['l_shoulder_' + angle_type][1] * 2 / 3,
                        -dircos_limit['shd1_U'] * 2 / 3,
                        -dircos_limit['shd1_L'] * 2 / 3)
                    self.m.pose[53] = generator.get_noisy_angle(
                        -entry['l_shoulder_' + angle_type][2] * 2 / 3,
                        -dircos_limit['shd2_U'] * 2 / 3,
                        -dircos_limit['shd2_L'] * 2 / 3)
                    self.m.pose[58] = generator.get_noisy_angle(
                        -entry['l_elbow'][1], -dircos_limit['elbow_U'],
                        -dircos_limit['elbow_L'])

                print "stuck in loop", self.reset_pose, flip_leftright
                if self.reset_pose == True:
                    pass
                else:
                    break

        from capsule_body import get_capsules, joint2name, rots0
        capsules = get_capsules(self.m)
        joint2name = joint2name
        rots0 = rots0
        print len(capsules)

        return self.m, capsules, joint2name, rots0
Ejemplo n.º 6
0
    def map_yash_to_smpl_angles(self, verbose=True):

        movements = ['LL', 'RL', 'LH1', 'LH2', 'LH3', 'RH1', 'RH2', 'RH3']

        subjects = [
            '40ESJ', 'GRTJK', 'TX887', 'WFGW9', 'WM9KJ', 'ZV7TE'
            'FMNGQ'
        ]

        for subject in subjects:
            for movement in movements:
                print "subject: ", subject, " movement: ", movement
                filename = "/home/henry/pressure_mat_angles/subject_" + subject + "/" + movement + "_angles.p"

                with open(filename, 'rb') as fp:
                    angles_data = pickle.load(fp)

                for entry in angles_data:

                    hip_dir_cos = (entry['r_hip_angle_axis'])
                    print hip_dir_cos
                    print entry['r_hip_angle_axis']

                    #entry = angles_data[50]
                    self.m.pose[6] = entry['r_hip_angle_axis'][0]
                    self.m.pose[7] = entry['r_hip_angle_axis'][1]  #/2
                    self.m.pose[8] = entry['r_hip_angle_axis'][2]
                    if verbose == True: print 'r hip', self.m.pose[6:9]

                    self.m.pose[15] = entry['r_knee_angle_axis'][0]
                    #self.m.pose[16] = entry['r_hip_angle_axis'][1]
                    if verbose == True: print 'r knee', self.m.pose[15:18]

                    self.m.pose[3] = entry['l_hip_angle_axis'][0]
                    self.m.pose[4] = entry['l_hip_angle_axis'][1]  #/2
                    self.m.pose[5] = entry['l_hip_angle_axis'][2]
                    if verbose == True: print 'l hip', self.m.pose[3:6]

                    self.m.pose[12] = entry['l_knee_angle_axis'][0]
                    #self.m.pose[13] = entry['l_hip_angle_axis'][1]
                    if verbose == True: print 'l knee', self.m.pose[12:15]

                    self.m.pose[51] = entry['r_shoulder_angle_axis'][0] * 2 / 3
                    self.m.pose[52] = entry['r_shoulder_angle_axis'][1] * 2 / 3
                    self.m.pose[53] = entry['r_shoulder_angle_axis'][2] * 2 / 3
                    self.m.pose[42] = entry['r_shoulder_angle_axis'][0] * 1 / 3
                    self.m.pose[43] = entry['r_shoulder_angle_axis'][1] * 1 / 3
                    self.m.pose[44] = entry['r_shoulder_angle_axis'][2] * 1 / 3
                    if verbose == True:
                        print 'r shoulder', self.m.pose[51:54] + self.m.pose[
                            42:45]

                    self.m.pose[58] = entry['r_elbow_angle_axis'][1]
                    if verbose == True: print 'r elbow', self.m.pose[57:60]

                    self.m.pose[48] = entry['l_shoulder_angle_axis'][0] * 2 / 3
                    self.m.pose[49] = entry['l_shoulder_angle_axis'][1] * 2 / 3
                    self.m.pose[50] = entry['l_shoulder_angle_axis'][2] * 2 / 3
                    self.m.pose[39] = entry['l_shoulder_angle_axis'][0] * 1 / 3
                    self.m.pose[40] = entry['l_shoulder_angle_axis'][1] * 1 / 3
                    self.m.pose[41] = entry['l_shoulder_angle_axis'][2] * 1 / 3
                    if verbose == True:
                        print 'l shoulder', self.m.pose[48:51] + self.m.pose[
                            39:42]

                    self.m.pose[55] = entry['l_elbow_angle_axis'][1]
                    if verbose == True: print 'l elbow', self.m.pose[54:57]
                    break
                break
            break

        from capsule_body import get_capsules, joint2name, rots0
        capsules = get_capsules(self.m)
        joint2name = joint2name
        rots0 = rots0
        print len(capsules)

        return self.m, capsules, joint2name, rots0
    def __init__(self,
                 render,
                 STARTING_HEIGHT,
                 input_flex_radius,
                 input_flex_length,
                 input_flex_mass,
                 shiftSIDE=0.0,
                 shiftUD=0.0):

        model_path = '/home/henry/git/SMPL_python_v.1.0.0/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl'

        m = load_model(model_path)

        regs = np.load(
            '/home/henry/git/smplify_public/code/models/regressors_locked_normalized_male.npz'
        )
        length_regs = regs['betas2lens']
        rad_regs = regs['betas2rads']
        betas = m.betas

        capsules_median = get_capsules(m, betas * 0, length_regs, rad_regs)
        capsules = get_capsules(m, betas, length_regs, rad_regs)

        joint_names = joint2name
        initial_rots = rots0
        self.num_steps = 10000
        self.render_dart = render
        self.ct = 0
        self.num_dart_steps = 4

        self.has_reset_velocity1 = False
        self.has_reset_velocity2 = False

        joint_ref = list(m.kintree_table[1])  #joints
        parent_ref = list(m.kintree_table[0])  #parent of each joint
        parent_ref[0] = -1

        self.capsules = capsules

        pydart.init(verbose=True)
        print('pydart initialization OK')

        self.world = pydart.World(
            0.0103 / 4, "EMPTY"
        )  #0.002 is what works well. 0.0103 is when the velocity aligns. thus flex is 0.0103/0.0020 = 5.15x more fast than dart
        self.world.set_gravity([0, 0, GRAVITY])  #([0, 0,  -9.81])
        self.world.set_collision_detector(detector_type=2)
        self.world.add_empty_skeleton(_skel_name="human")

        self.force_dir_list_prev = [[], [], [], [], [], [], [], [], [], [], [],
                                    [], [], [], [], [], [], [], [], []]
        self.pmat_idx_list_prev = [[], [], [], [], [], [], [], [], [], [], [],
                                   [], [], [], [], [], [], [], [], []]
        self.force_loc_list_prev = [[], [], [], [], [], [], [], [], [], [], [],
                                    [], [], [], [], [], [], [], [], []]

        joint_root_loc = np.asarray(np.transpose(capsules[0].t)[0])

        self.step_num = 0

        joint_locs = []
        capsule_locs = []
        joint_locs_abs = []
        joint_locs_trans_abs = []
        capsule_locs_abs = []

        mJ = np.asarray(m.J)
        mJ_transformed = np.asarray(m.J_transformed)

        shift = [shiftSIDE, shiftUD, 0.0]

        red_joint_ref = joint_ref[0:20]  #joints
        red_parent_ref = parent_ref[0:20]  #parent of each joint
        red_parent_ref[10] = 9  #fix neck
        red_parent_ref[11] = 9  #fix l inner shoulder
        red_parent_ref[13] = 10  #fix head
        red_parent_ref[14] = 11  #fix l outer shoulder
        red_parent_ref[15] = 12  #fix r outer shoulder
        red_parent_ref[16] = 14  #fix l elbow
        red_parent_ref[17] = 15  #fix r elbow

        head_ref = [10, 13]
        leg_cap_ref = [1, 2, 4, 5]
        foot_ref = [7, 8]
        l_arm_ref = [11, 14, 16, 18]
        r_arm_ref = [12, 15, 17, 19]

        self.red_joint_ref = [joint_ref[0]]
        self.red_parent_ref = red_parent_ref

        #make lists of the locations of the joint locations and the smplify capsule initial ends
        for i in range(np.shape(mJ)[0]):
            if i == 0:
                joint_locs.append(list(mJ[0, :] - mJ[0, :] + shift))
                joint_locs_abs.append(list(mJ[0, :] - mJ[0, :]))
                joint_locs_trans_abs.append(
                    list(mJ_transformed[0, :] - mJ_transformed[0, :]))
                if i < 20:
                    capsule_locs.append(
                        list(
                            np.asarray(np.transpose(capsules[i].t)[0]) -
                            joint_root_loc))
                    capsule_locs_abs.append(
                        list(
                            np.asarray(np.transpose(capsules[i].t)[0]) -
                            joint_root_loc))
                    print(capsule_locs_abs, "caps locs abs")
            else:
                joint_locs.append(list(mJ[i, :] - mJ[parent_ref[i], :]))
                joint_locs_abs.append(list(mJ[i, :] - mJ[0, :]))
                joint_locs_trans_abs.append(
                    list(mJ_transformed[i, :] - mJ_transformed[0, :]))
                if i < 20:
                    capsule_locs.append(
                        list(
                            np.asarray(np.transpose(capsules[i].t)[0]) -
                            np.asarray(
                                np.transpose(capsules[red_parent_ref[i]].t)[0])
                        ))
                    capsule_locs_abs.append(
                        list(
                            np.asarray(np.transpose(capsules[i].t)[0]) -
                            joint_root_loc))
                    capsule_locs_abs[i][0] += np.abs(
                        float(capsules[0].length[0])) / 2
                    if i in [
                            1, 2
                    ]:  #shift over the legs relative to where the pelvis mid capsule is
                        capsule_locs[i][0] += np.abs(
                            float(capsules[0].length[0])) / 2
                    if i in [
                            3, 6, 9
                    ]:  #shift over the torso segments relative to their length and their parents length to match the mid capsule
                        capsule_locs[i][0] -= (
                            np.abs(float(capsules[i].length[0])) -
                            np.abs(float(
                                capsules[red_parent_ref[i]].length[0]))) / 2
                    if i in [
                            10, 11, 12
                    ]:  #shift over the inner shoulders and neck to match the middle of the top spine capsule
                        capsule_locs[i][0] += np.abs(
                            float(capsules[red_parent_ref[i]].length[0])) / 2
                    if i in [
                            3, 6, 9
                    ]:  #shift over everything in the abs list to match the root
                        capsule_locs_abs[i][0] -= np.abs(
                            float(capsules[i].length[0])) / 2

        del (joint_locs[10])
        del (joint_locs[10])
        del (joint_locs_abs[10])
        del (joint_locs_abs[10])

        self.joint_locs = joint_locs

        count = 0
        root_joint_type = "FREE"

        self.cap_offsets = []
        self.cap_init_rots = []
        lowest_points = []

        for capsule in capsules:
            print "************* Capsule No.", count, joint_names[
                count], " joint ref: ", red_joint_ref[
                    count], " parent_ref: ", red_parent_ref[
                        count], " ****************"

            cap_rad = input_flex_radius
            cap_len = input_flex_length
            cap_init_rot = list(np.asarray(initial_rots[count]))

            joint_loc = joint_locs[count]
            joint_loc_abs = joint_locs_abs[count]
            capsule_loc = capsule_locs[count]
            capsule_loc_abs = capsule_locs_abs[count]

            cap_offset = [0., 0., 0.]
            if count in leg_cap_ref:
                cap_offset[1] = -cap_len / 2
            if count in foot_ref: cap_offset[2] = cap_len / 2
            if count in l_arm_ref: cap_offset[0] = cap_len / 2
            if count in r_arm_ref: cap_offset[0] = -cap_len / 2
            #if count in head_ref: cap_offset[1] = cap_len/2

            cap_offset[0] += capsule_loc_abs[0] - joint_loc_abs[0]
            cap_offset[1] += capsule_loc_abs[1] - joint_loc_abs[1] - .04
            cap_offset[2] += capsule_loc_abs[2] - joint_loc_abs[2]
            self.cap_offsets.append(np.asarray(cap_offset))
            self.cap_init_rots.append(np.asarray(cap_init_rot))

            if count == 0:
                self.world.add_capsule(parent=int(red_parent_ref[count]),
                                       radius=cap_rad,
                                       length=cap_len,
                                       cap_rot=cap_init_rot,
                                       cap_offset=cap_offset,
                                       joint_loc=joint_loc,
                                       joint_type=root_joint_type,
                                       joint_name=joint_names[count])
            elif count == 4 or count == 5:
                self.world.add_capsule(parent=int(red_parent_ref[count]),
                                       radius=cap_rad,
                                       length=cap_len,
                                       cap_rot=cap_init_rot,
                                       cap_offset=cap_offset,
                                       joint_loc=joint_loc,
                                       joint_type="REVOLUTE_X",
                                       joint_name=joint_names[count])
            elif count == 16 or count == 17:
                self.world.add_capsule(parent=int(red_parent_ref[count]),
                                       radius=cap_rad,
                                       length=cap_len,
                                       cap_rot=cap_init_rot,
                                       cap_offset=cap_offset,
                                       joint_loc=joint_loc,
                                       joint_type="REVOLUTE_Y",
                                       joint_name=joint_names[count])
            else:
                self.world.add_capsule(parent=int(red_parent_ref[count]),
                                       radius=cap_rad,
                                       length=cap_len,
                                       cap_rot=cap_init_rot,
                                       cap_offset=cap_offset,
                                       joint_loc=joint_loc,
                                       joint_type="BALL",
                                       joint_name=joint_names[count])

            lowest_points.append(
                np.asarray(joint_locs_trans_abs)[count, 2] -
                np.abs(float(input_flex_radius)))

            count += 1
            break

        #print "pelvis cap",
        #print np.asarray(joint_locs_trans_abs)[:, 2]
        self.STARTING_HEIGHT = STARTING_HEIGHT - 0.0508

        #add a floor-STARTING_HEIGHT / DART_TO_FLEX_CONV
        self.world.add_weld_box(
            width=10.0,
            length=10.0,
            height=0.2,
            joint_loc=[
                0.0, 0.0, -self.STARTING_HEIGHT / DART_TO_FLEX_CONV / 2 - 0.05
            ],
            box_rot=[0.0, 0.0, 0.0],
            joint_name="floor")  #-0.05

        skel = self.world.add_built_skeleton(_skel_id=0, _skel_name="human")

        skel.set_self_collision_check(True)

        #weight the capsules appropriately
        volume = []
        volume_median = []
        for body_ct in range(NUM_CAPSULES):
            #give the capsules a weight propertional to their volume
            cap_rad = input_flex_radius
            cap_len = input_flex_length

            cap_rad_median = np.abs(float(capsules_median[body_ct].rad[0]))
            cap_len_median = np.abs(float(capsules_median[body_ct].length[0]))

            volume.append(np.pi * np.square(cap_rad) *
                          (cap_rad * 4 / 3 + cap_len))
            volume_median.append(np.pi * np.square(cap_rad_median) *
                                 (cap_rad_median * 4 / 3 + cap_len_median))

        skel.bodynodes[0].set_mass(input_flex_mass)

        body_mass = 0.0
        #set the mass moment of inertia matrices
        for body_ct in range(NUM_CAPSULES):
            radius = input_flex_radius
            length = input_flex_length
            radius2 = radius * radius
            length2 = length * length
            mass = skel.bodynodes[body_ct].m

            cap_init_rot = list(np.asarray(initial_rots[body_ct]))

            volumeCylinder = np.pi * radius2 * length
            volumeSphere = np.pi * radius * radius * radius * 4 / 3

            density = mass / (volumeCylinder + volumeSphere)
            massCylinder = density * volumeCylinder
            massSphere = density * volumeSphere
            Ixx = massCylinder * (length2 / 12.0 +
                                  radius2 / 4.0) + massSphere * (
                                      length2 + (3.0 / 8.0) * length * radius +
                                      (2.0 / 5.0) * radius2)
            Izz = massCylinder * (radius2 / 2.0) + massSphere * (
                (2.0 / 5.0) * radius2)

            RotMatInit = LibDartSkel().eulerAnglesToRotationMatrix(
                [np.pi / 2, 0.0, 0.0])
            RotMat = LibDartSkel().eulerAnglesToRotationMatrix(cap_init_rot)
            I = np.matmul(np.matmul(RotMatInit, RotMat),
                          np.asarray([Ixx, Izz, Ixx]))
            Ixx = np.abs(I[0])
            Iyy = np.abs(I[1])
            Izz = np.abs(I[2])
            #print body_ct, I

            skel.bodynodes[body_ct].set_inertia_entries(Ixx, Iyy, Izz)

            body_mass += skel.bodynodes[body_ct].m
            break

        print "Body mass is: ", body_mass, "kg"
        self.body_node = 9  #need to solve for the body node that corresponds to a force using flex.
        self.force = np.asarray([0.0, 100.0, 100.0])
        self.offset_from_centroid = np.asarray([-0.15, 0.0, 0.0])

        self.pmat_red_all = np.load(
            "/home/henry/git/volumetric_pose_gen/data/pmat_red.npy")
        self.force_dir_red_dart_all = np.load(
            "/home/henry/git/volumetric_pose_gen/data/force_dir_red.npy")
        for element in range(len(self.force_dir_red_dart_all)):
            self.force_dir_red_dart_all[element] = (np.multiply(
                np.asarray(self.force_dir_red_dart_all[element]),
                np.expand_dims(np.asarray(self.pmat_red_all[element]),
                               axis=1)))
        self.force_loc_red_dart_all = np.load(
            "/home/henry/git/volumetric_pose_gen/data/force_loc_red.npy"
        ).tolist()
        self.nearest_capsule_list_all = np.load(
            "/home/henry/git/volumetric_pose_gen/data/nearest_capsule.npy"
        ).tolist()

        print('init pose = %s' % skel.q)
        skel.controller = DampingController(skel)

        #now setup the open GL window
        self.title = "GLUT Window"
        self.window_size = (1280, 720)
        self.scene = OpenGLScene(*self.window_size)

        self.mouseLastPos = None
        self.is_simulating = False
        self.is_animating = False
        self.frame_index = 0
        self.capture_index = 0

        self.force_application_count = 0
        self.count = 0

        self.zi = []
        self.b = []
        self.a = []
        for i in range(60):
            b, a = signal.butter(1, 0.05, analog=False)
            self.b.append(b)
            self.a.append(a)
            self.zi.append(signal.lfilter_zi(self.b[-1], self.a[-1]))
        self.ziF = []
        self.bF = []
        self.aF = []
        for i in range(3):
            b, a = signal.butter(1, 0.05, analog=False)
            self.bF.append(b)
            self.aF.append(a)
            self.ziF.append(signal.lfilter_zi(self.bF[-1], self.aF[-1]))
Ejemplo n.º 8
0
    def map_slp_to_rand_angles(self, original_pose, alter_angles = True):
        angle_type = "angle_axis"
        #angle_type = "euler"

        dircos_limit = {}
        dircos_limit['hip0_L'] = -1.8620680158061373
        dircos_limit['hip0_U'] = 0.3928991379790361
        dircos_limit['hip1_L'] = -0.3002682177448498
        dircos_limit['hip1_U'] = 0.4312268766210817
        dircos_limit['hip2_L'] = -0.5252221939422439
        dircos_limit['hip2_U'] = 0.9361197251810272
        dircos_limit['knee_L'] = -0.00246317350132912
        dircos_limit['knee_U'] = 2.5615940356353004

        dircos_limit['shd00_L'] = -0.44788772883633016
        dircos_limit['shd00_U'] = 0.20496654360962563
        dircos_limit['shd01_L'] = -1.0991885726395296
        dircos_limit['shd01_U'] = 0.6828417105678483
        dircos_limit['shd02_L'] = -0.6177946204522845
        dircos_limit['shd02_U'] = 0.7288264054368747

        dircos_limit['shd10_L'] = -0.8121612985394123
        dircos_limit['shd10_U'] = 0.7203413993648013
        dircos_limit['shd11_L'] = -1.3427142449685556
        dircos_limit['shd11_U'] = 0.4865822031689829
        dircos_limit['shd12_L'] = -1.292990223497471
        dircos_limit['shd12_U'] = 0.7428419209098167

        dircos_limit['elbow_L'] = -2.656264518131647
        dircos_limit['elbow_U'] = 0.1873184747130497

        print('alter angs',alter_angles)

        while True:
            self.reset_pose = False

            R_root = libKinematics.matrix_from_dir_cos_angles(original_pose[0:3])

            flip_root_euler = np.pi
            flip_root_R = libKinematics.eulerAnglesToRotationMatrix([flip_root_euler, 0.0, 0.0])

            root_rot_rand_R = libKinematics.eulerAnglesToRotationMatrix([0.0,  random.normalvariate(0.0, np.pi/12),  random.normalvariate(0.0, np.pi/12)]) #randomize the root rotation
            #root_rot_rand_R = libKinematics.eulerAnglesToRotationMatrix([0.0,  0.0, 0.0]) #randomize the root rotation

            dir_cos_root = libKinematics.dir_cos_angles_from_matrix(np.matmul(root_rot_rand_R, np.matmul(R_root, flip_root_R)))


            #R_root2 = libKinematics.matrix_from_dir_cos_angles([original_pose[0]-4*np.pi, original_pose[1], original_pose[2]])
            #dir_cos_root2 = libKinematics.dir_cos_angles_from_matrix(R_root2)
            #print('eulers2', libKinematics.rotationMatrixToEulerAngles(R_root2))


            self.m.pose[0] = dir_cos_root[0]
            self.m.pose[1] = -dir_cos_root[1]
            self.m.pose[2] = dir_cos_root[2]

            #print(original_pose[0:3])
            #print(dir_cos_root)
            #print(dir_cos_root2)




            self.m.pose[3] = generator.get_noisy_angle_hard_limit(original_pose[3], dircos_limit['hip0_L'], dircos_limit['hip0_U'])
            self.m.pose[4] = generator.get_noisy_angle_hard_limit(original_pose[4], dircos_limit['hip1_L'], dircos_limit['hip1_U'])
            self.m.pose[5] = generator.get_noisy_angle_hard_limit(original_pose[5], dircos_limit['hip2_L'], dircos_limit['hip2_U'])
            self.m.pose[12] = generator.get_noisy_angle_hard_limit(original_pose[12], dircos_limit['knee_L'], dircos_limit['knee_U'])
            self.m.pose[13] = original_pose[13]
            self.m.pose[14] = original_pose[14]



            self.m.pose[6] = generator.get_noisy_angle_hard_limit(original_pose[6], dircos_limit['hip0_L'], dircos_limit['hip0_U'])
            self.m.pose[7] = generator.get_noisy_angle_hard_limit(original_pose[7], -dircos_limit['hip1_U'], -dircos_limit['hip1_L'])
            self.m.pose[8] = generator.get_noisy_angle_hard_limit(original_pose[8], -dircos_limit['hip2_U'], -dircos_limit['hip2_L'])
            self.m.pose[15] = generator.get_noisy_angle_hard_limit(original_pose[15], dircos_limit['knee_L'], dircos_limit['knee_U'])
            self.m.pose[16] = original_pose[16]
            self.m.pose[17] = original_pose[17]



            self.m.pose[9] = original_pose[9] #stomach
            self.m.pose[10] = original_pose[10] #stomach
            self.m.pose[11] = original_pose[11] #stomach


            self.m.pose[18] = original_pose[18]#chest
            self.m.pose[19] = original_pose[19]#chest
            self.m.pose[20] = original_pose[20]#chest
            self.m.pose[21] = original_pose[21]#l ankle
            self.m.pose[22] = original_pose[22]#l ankle
            self.m.pose[23] = original_pose[23]#l ankle
            self.m.pose[24] = original_pose[24]#r ankle
            self.m.pose[25] = original_pose[25]#r ankle
            self.m.pose[26] = original_pose[26]#r ankle
            self.m.pose[27] = original_pose[27]#sternum
            self.m.pose[28] = original_pose[28]#sternum
            self.m.pose[29] = original_pose[29]#stermum
            self.m.pose[30] = original_pose[30]#l foot
            self.m.pose[31] = original_pose[31]#l foot
            self.m.pose[32] = original_pose[32]#l foot
            self.m.pose[33] = original_pose[33]#r foot
            self.m.pose[34] = original_pose[34]#r foot
            self.m.pose[35] = original_pose[35]#r foot
            self.m.pose[36] = original_pose[36]#neck
            self.m.pose[37] = original_pose[37]#neck
            self.m.pose[38] = original_pose[38]#neck

            self.m.pose[45] = original_pose[45]#head
            self.m.pose[46] = original_pose[46]#head
            self.m.pose[47] = original_pose[47]#head


            self.m.pose[39] = generator.get_noisy_angle_hard_limit(original_pose[39], dircos_limit['shd00_L'], dircos_limit['shd00_U'])
            self.m.pose[40] = generator.get_noisy_angle_hard_limit(original_pose[40], dircos_limit['shd01_L'], dircos_limit['shd01_U'])
            self.m.pose[41] = generator.get_noisy_angle_hard_limit(original_pose[41], dircos_limit['shd02_L'], dircos_limit['shd02_U'])
            self.m.pose[42] = generator.get_noisy_angle_hard_limit(original_pose[42], dircos_limit['shd00_L'], dircos_limit['shd00_U'])
            self.m.pose[43] = generator.get_noisy_angle_hard_limit(original_pose[43], -dircos_limit['shd01_U'], -dircos_limit['shd01_L'])
            self.m.pose[44] = generator.get_noisy_angle_hard_limit(original_pose[44], -dircos_limit['shd02_U'], -dircos_limit['shd02_L'])
            self.m.pose[54] = original_pose[54]
            self.m.pose[55] = generator.get_noisy_angle_hard_limit(original_pose[55], dircos_limit['elbow_L'], dircos_limit['elbow_U'])
            self.m.pose[56] = original_pose[56]


            self.m.pose[48] = generator.get_noisy_angle_hard_limit(original_pose[48], dircos_limit['shd10_L'], dircos_limit['shd10_U'])
            self.m.pose[49] = generator.get_noisy_angle_hard_limit(original_pose[49], dircos_limit['shd11_L'], dircos_limit['shd11_U'])
            self.m.pose[50] = generator.get_noisy_angle_hard_limit(original_pose[50], dircos_limit['shd12_L'], dircos_limit['shd12_U'])
            self.m.pose[51] = generator.get_noisy_angle_hard_limit(original_pose[51], dircos_limit['shd10_L'], dircos_limit['shd10_U'])
            self.m.pose[52] = generator.get_noisy_angle_hard_limit(original_pose[52], -dircos_limit['shd11_U'], -dircos_limit['shd11_L'])
            self.m.pose[53] = generator.get_noisy_angle_hard_limit(original_pose[53], -dircos_limit['shd12_U'], -dircos_limit['shd12_L'])
            self.m.pose[57] = original_pose[57]
            self.m.pose[58] = generator.get_noisy_angle_hard_limit(original_pose[58], -dircos_limit['elbow_U'], -dircos_limit['elbow_L'])
            self.m.pose[59] = original_pose[59]

            for i in range(60, 72):
                self.m.pose[i] = original_pose[i]


            print "stuck in loop", self.reset_pose
            if self.reset_pose == True:
                pass
            else:
                break

        from capsule_body import get_capsules, joint2name, rots0
        capsules = get_capsules(self.m)
        joint2name = joint2name
        rots0 = rots0
        print len(capsules)

        return self.m, capsules, joint2name, rots0