Ejemplo n.º 1
0
 def fitnessBattle(self, particle):
     options = capture.readCommand(self.flags)
     verbose = options.pop('verbose') # pop it off since runGame can't handle it
     #options['display'] = None
     options['numGames'] = 1
     options['record'] = False
     options['numTraining'] = False
     for agent in options['agents']:
         agent.setWeights(particle.position if agent.isRed else particle.bestKnown)
     games = capture.runGames(**options)
     assert(len(games) == 1)
     if(games[0].state.data.score < 0): #Blue wins
         return particle.bestKnownVal - 1
     
     options = capture.readCommand(self.flags)
     verbose = options.pop('verbose') # pop it off since runGame can't handle it
     #options['display'] = None
     options['numGames'] = 1
     options['record'] = False
     options['numTraining'] = False
     for agent in options['agents']:
         agent.setWeights(particle.bestKnown if agent.isRed else particle.position)
     games = capture.runGames(**options)
     assert(len(games) == 1)
     if(games[0].state.data.score > 0): #Red wins
         return particle.bestKnownVal - 1
     
     bestSwarm = True
     
     options = capture.readCommand(self.flags)
     verbose = options.pop('verbose') # pop it off since runGame can't handle it
     #options['display'] = None
     options['numGames'] = 1
     options['record'] = False
     options['numTraining'] = 0
     for agent in options['agents']:
         agent.setWeights(particle.position if agent.isRed else particle.swarm.bestKnown)
     games = capture.runGames(**options)
     assert(len(games) == 1)
     if(games[0].state.data.score < 0): #Blue wins
         return particle.swarm.bestKnownVal
     
     options = capture.readCommand(self.flags)
     verbose = options.pop('verbose') # pop it off since runGame can't handle it
     #options['display'] = None
     options['numGames'] = 1
     options['record'] = False
     options['numTraining'] = 0
     for agent in options['agents']:
         agent.setWeights(particle.swarm.bestKnown if agent.isRed else particle.position)
     games = capture.runGames(**options)
     assert(len(games) == 1)
     if(games[0].state.data.score > 0): #Red wins
         return particle.swarm.bestKnownVal
         
     return particle.swarm.bestKnownVal + 20
Ejemplo n.º 2
0
def eval_func(chromosome):
    # arguments for the pacman game
    argv = ["-r", "myTeam", "-b", "baselineTeam", "-l", "RANDOM107", "-Q", "-n", "3"]
    options = readCommand(argv)  # Get game components based on input
    options["chromosome"] = chromosome.genomeList
    
    games = runGames(**options)    

    # scores = [game.state.data.score - len(game.state.getBlueFood().asList()) + 2 for game in games];
    # scores = [game.state.data.score + 100.0 * exp(-len(game.state.getBlueFood().asList()) + 2) for game in games];
    # scores = [50.0 * exp(-len(game.state.getBlueFood().asList()) + 2) for game in games];
    
#    foodEaten = [4 - len(game.state.getBlueFood().asList()) for game in games]
#    foodLost = [4 - len(game.state.getRedFood().asList()) for game in games]
#    pacmanKills = []
#    scores = []
#    for i in range(len(games)):
#        killBalance = (games[i].state.data.score - (foodEaten[i] - foodLost[i]))
#        pacmanKills.append(killBalance)
#       # scores.append(foodEaten[i] - foodLost[i] + killBalance)
#        scores.append(foodEaten[i] - (foodLost[i] * 10) + (killBalance / 10.0))
    
    scores = [game.state.data.score for game in games]
    
    minScore = min(scores)
    avgScore = float(sum(scores)) / len(scores)
    
#    print "Chromosome: ",
#    print chromosome.genomeList,
#    print ""
#    print " got a score of: ",
#    print avgScore
    
    return avgScore
Ejemplo n.º 3
0
def eval_func():
    # arguments for the pacman game
    argv = ["-r", "myTeam", "-b", "baselineTeam", "-Q", "-n", "10"]
    options = readCommand(argv)  # Get game components based on input
    games = runGames(**options)

    scores = [game.state.data.score for game in games]

    average = sum(scores) / 10.0
    maxi = max(scores)
    mini = min(scores)
    return [average, maxi, mini]
Ejemplo n.º 4
0
optimizer = optim.Adam([A, b], lr=0.1)

for t in xrange(2000):
    # Set the gradients to 0
    optimizer.zero_grad()
    # Compute the current predicted y's from x_dataset
    y_predicted = model(x_dataset)
    # See how far off the prediction is
    current_loss = loss(y_predicted, y_dataset)
    # Compute the gradient of the loss with respect to A and b
    current_loss.backward()
    # Update A and b accordingly
    optimizer.step()
    print "t = %s, loss = %s, A = %s, b = %s" % (t, current_loss,
                                                 A.detach().numpy(), b.item())

if __name__ == '__main__':
    """
    The main function called when pacman.py is run
    from the command line:

    > python capture.py

    See the usage string for more details.

    > python capture.py --help
    """
    options = readCommand(sys.argv[1:])  # Get game components based on input
    games = runGames(**options)
Ejemplo n.º 5
0

def qFunc(state, weights):
	s = np.asarray([state])
	w = np.asarray([weights]).T
	q = np.matmul(s, w)[0][0]
	return q


if __name__ == '__main__':
	for i in range(30):
		with open("record.txt", "w") as f:
		    pass
		argv = ["-r", "myTeam.py", "-b", "myTeam.py", "-l", "RANDOM", "-n", "2", "-q"]
		options = readCommand(argv)
		runGames(**options)
		argv = ["-r", "myTeam.py", "-b", "shibaReflex.py", "-l", "RANDOM", "-n", "2", "-q"]
		options = readCommand(argv)
		runGames(**options)
		argv = ["-r", "myTeam.py", "-b", "yellowdogReflex.py", "-l", "RANDOM", "-n", "2", "-q"]
		options = readCommand(argv)
		runGames(**options)
		records = readRecords("record.txt")
		with open("weights.txt", "r") as f:
			weights = ast.literal_eval(f.read())
		print(weights)
		new_weights = train(10, records, weights)
		print(new_weights)
		with open("weights.txt", "w") as f:
			f.write(json.dumps(new_weights))
		with open("weights_history.txt", "a") as f:
Ejemplo n.º 6
0
    def fitnessBattle(self, particle):
        options = capture.readCommand(self.flags)
        verbose = options.pop(
            'verbose')  # pop it off since runGame can't handle it
        #options['display'] = None
        options['numGames'] = 1
        options['record'] = False
        options['numTraining'] = False
        for agent in options['agents']:
            agent.setWeights(
                particle.position if agent.isRed else particle.bestKnown)
        games = capture.runGames(**options)
        assert (len(games) == 1)
        if (games[0].state.data.score < 0):  #Blue wins
            return particle.bestKnownVal - 1

        options = capture.readCommand(self.flags)
        verbose = options.pop(
            'verbose')  # pop it off since runGame can't handle it
        #options['display'] = None
        options['numGames'] = 1
        options['record'] = False
        options['numTraining'] = False
        for agent in options['agents']:
            agent.setWeights(
                particle.bestKnown if agent.isRed else particle.position)
        games = capture.runGames(**options)
        assert (len(games) == 1)
        if (games[0].state.data.score > 0):  #Red wins
            return particle.bestKnownVal - 1

        bestSwarm = True

        options = capture.readCommand(self.flags)
        verbose = options.pop(
            'verbose')  # pop it off since runGame can't handle it
        #options['display'] = None
        options['numGames'] = 1
        options['record'] = False
        options['numTraining'] = 0
        for agent in options['agents']:
            agent.setWeights(
                particle.position if agent.isRed else particle.swarm.bestKnown)
        games = capture.runGames(**options)
        assert (len(games) == 1)
        if (games[0].state.data.score < 0):  #Blue wins
            return particle.swarm.bestKnownVal

        options = capture.readCommand(self.flags)
        verbose = options.pop(
            'verbose')  # pop it off since runGame can't handle it
        #options['display'] = None
        options['numGames'] = 1
        options['record'] = False
        options['numTraining'] = 0
        for agent in options['agents']:
            agent.setWeights(
                particle.swarm.bestKnown if agent.isRed else particle.position)
        games = capture.runGames(**options)
        assert (len(games) == 1)
        if (games[0].state.data.score > 0):  #Red wins
            return particle.swarm.bestKnownVal

        return particle.swarm.bestKnownVal + 20
Ejemplo n.º 7
0
"""
Author:      XuLin Yang
Student id:  904904
Date:        2020-2-6 23:31:18
Description: code to test the performance between each agents
"""

import time
import capture
"""
["D:\python\python.exe",
                             "-m",
                              "../capture.py",
                              "--delay 0.0",
                              "-r ./pacman_ai/myTeam.py --redOpts=first=SearchAgent,second=SearchAgent",
                              "-b ../baselineTeam.py --blueOpts=first=DefensiveReflexAgent,second=DefensiveReflexAgent"]
"""

if __name__ == "__main__":
    start_time = time.time()
    options = capture.readCommand([
        "-r", "./teams/pacman_ai/myTeam.py",
        "--redOpts=first=InferenceAgent,second=InferenceAgent", "-b",
        "./baselineTeam.py",
        "--blueOpts=first=DefensiveReflexAgent,second=DefensiveReflexAgent"
    ])
    games = capture.runGames(**options)

    print('\nTotal Time Game: %s' % round(time.time() - start_time, 0))
Ejemplo n.º 8
0
 def runGame(self):
     from capture import runGames, save_score
     self.options['server'] = self.server
     games = runGames(**self.options)
     self.resetGames()
     save_score(games[0])
Ejemplo n.º 9
0
def eval_func2(genome):
    argv = ["-r", "baselineTeam", "-b", "baselineTeam", "-q"]
    options = readCommand(argv)  # Get game components based on input
    runGames(**options)

    return 0