Ejemplo n.º 1
0
    def generate_mmodes(self):
        """Calculate the m-modes corresponding to the Timestream.

        Perform an MPI transpose for efficiency.
        """

        if os.path.exists(self.output_directory + "/mmodes/COMPLETED_M"):
            if mpiutil.rank0:
                print "******* m-files already generated ********"
            return

        tel = self.telescope
        mmax = tel.mmax
        nfreq = tel.nfreq

        lfreq, sfreq, efreq = mpiutil.split_local(nfreq)
        lm, sm, em = mpiutil.split_local(mmax + 1)

        # Load in the local frequencies of the time stream
        tstream = np.zeros((lfreq, tel.npairs, self.ntime),
                           dtype=np.complex128)
        for lfi, fi in enumerate(range(sfreq, efreq)):
            tstream[lfi] = self.timestream_f(fi)

        # FFT to calculate the m-modes for the timestream
        row_mmodes = np.fft.fft(tstream, axis=-1) / self.ntime

        ## Combine positive and negative m parts.
        row_mpairs = np.zeros((lfreq, 2, tel.npairs, mmax + 1),
                              dtype=np.complex128)

        row_mpairs[:, 0, ..., 0] = row_mmodes[..., 0]
        for mi in range(1, mmax + 1):
            row_mpairs[:, 0, ..., mi] = row_mmodes[..., mi]
            row_mpairs[:, 1, ..., mi] = row_mmodes[..., -mi].conj()

        # Transpose to get the entirety of an m-mode on each process (i.e. all frequencies)
        col_mmodes = mpiutil.transpose_blocks(row_mpairs,
                                              (nfreq, 2, tel.npairs, mmax + 1))

        # Transpose the local section to make the m's first
        col_mmodes = np.transpose(col_mmodes, (3, 0, 1, 2))

        for lmi, mi in enumerate(range(sm, em)):

            # Make directory for each m-mode
            if not os.path.exists(self._mdir(mi)):
                os.makedirs(self._mdir(mi))

            # Create the m-file and save the result.
            with h5py.File(self._mfile(mi), 'w') as f:
                f.create_dataset('/mmode', data=col_mmodes[lmi])
                f.attrs['m'] = mi

        if mpiutil.rank0:

            # Make file marker that the m's have been correctly generated:
            open(self.output_directory + "/mmodes/COMPLETED_M", 'a').close()

        mpiutil.barrier()
Ejemplo n.º 2
0
    def generate_mmodes(self):
        """Calculate the m-modes corresponding to the Timestream.

        Perform an MPI transpose for efficiency.
        """


        if os.path.exists(self.output_directory + "/mmodes/COMPLETED_M"):
            if mpiutil.rank0:
                print "******* m-files already generated ********"
            return

        tel = self.telescope
        mmax = tel.mmax
        nfreq = tel.nfreq

        lfreq, sfreq, efreq = mpiutil.split_local(nfreq)
        lm, sm, em = mpiutil.split_local(mmax + 1)

        # Load in the local frequencies of the time stream
        tstream = np.zeros((lfreq, tel.npairs, self.ntime), dtype=np.complex128)
        for lfi, fi in enumerate(range(sfreq, efreq)):
            tstream[lfi] = self.timestream_f(fi)

        # FFT to calculate the m-modes for the timestream
        row_mmodes = np.fft.fft(tstream, axis=-1) / self.ntime

        ## Combine positive and negative m parts.
        row_mpairs = np.zeros((lfreq, 2, tel.npairs, mmax+1), dtype=np.complex128)

        row_mpairs[:, 0, ..., 0] = row_mmodes[..., 0]
        for mi in range(1, mmax+1):
            row_mpairs[:, 0, ..., mi] = row_mmodes[...,  mi]
            row_mpairs[:, 1, ..., mi] = row_mmodes[..., -mi].conj()

        # Transpose to get the entirety of an m-mode on each process (i.e. all frequencies)
        col_mmodes = mpiutil.transpose_blocks(row_mpairs, (nfreq, 2, tel.npairs, mmax + 1))

        # Transpose the local section to make the m's first
        col_mmodes = np.transpose(col_mmodes, (3, 0, 1, 2))

        for lmi, mi in enumerate(range(sm, em)):

            # Make directory for each m-mode
            if not os.path.exists(self._mdir(mi)):
                os.makedirs(self._mdir(mi))

            # Create the m-file and save the result.
            with h5py.File(self._mfile(mi), 'w') as f:
                f.create_dataset('/mmode', data=col_mmodes[lmi])
                f.attrs['m'] = mi

        if mpiutil.rank0:

            # Make file marker that the m's have been correctly generated:
            open(self.output_directory + "/mmodes/COMPLETED_M", 'a').close()

        mpiutil.barrier()
Ejemplo n.º 3
0
def simulate(beamtransfer,
             outdir,
             tsname,
             maps=[],
             ndays=None,
             resolution=0,
             add_noise=True,
             seed=None,
             **kwargs):
    """Create a simulated timestream and save it to disk.

    Parameters
    ----------
    m : ProductManager object
        Products of telescope to simulate.
    outdir : directoryname
        Directory that we will save the timestream into.
    maps : list
        List of map filenames. The sum of these form the simulated sky.
    ndays : int, optional
        Number of days of observation. Setting `ndays = None` (default) uses
        the default stored in the telescope object; `ndays = 0`, assumes the
        observation time is infinite so that the noise is zero.
    resolution : scalar, optional
        Approximate time resolution in seconds. Setting `resolution = 0`
        (default) calculates the value from the mmax.

    Returns
    -------
    timestream : Timestream
    """

    # Create timestream object
    tstream = Timestream(outdir, tsname, beamtransfer)

    completed_file = tstream._tsdir + '/COMPLETED_TIMESTREAM'
    if os.path.exists(completed_file):
        if mpiutil.rank0:
            print "******* timestream-files already generated ********"
        mpiutil.barrier()
        return tstream

    # Make directory if required
    try:
        os.makedirs(tstream._tsdir)
    except OSError:
        # directory exists
        pass

    if mpiutil.rank0:
        # if not os.path.exists(tstream._tsdir):
        #     os.makedirs(tstream._tsdir)

        tstream.save()

    ## Read in telescope system
    bt = beamtransfer
    tel = bt.telescope

    lmax = tel.lmax
    mmax = tel.mmax
    nfreq = tel.nfreq
    npol = tel.num_pol_sky

    projmaps = (len(maps) > 0)

    lfreq, sfreq, efreq = mpiutil.split_local(nfreq)
    local_freq = range(sfreq, efreq)

    lm, sm, em = mpiutil.split_local(mmax + 1)

    # If ndays is not set use the default value.
    if ndays is None:
        ndays = tel.ndays

    # Calculate the number of timesamples from the resolution
    if resolution == 0:
        # Set the minimum resolution required for the sky.
        ntime = 2 * mmax + 1
    else:
        # Set the cl
        ntime = int(np.round(24 * 3600.0 / resolution))

    col_vis = np.zeros((tel.npairs, lfreq, ntime), dtype=np.complex128)

    ## If we want to add maps use the m-mode formalism to project a skymap
    ## into visibility space.

    if projmaps:

        # Load file to find out the map shapes.
        with h5py.File(maps[0], 'r') as f:
            mapshape = f['map'].shape

        if lfreq > 0:

            # Allocate array to store the local frequencies
            row_map = np.zeros((lfreq, ) + mapshape[1:], dtype=np.float64)

            # Read in and sum up the local frequencies of the supplied maps.
            for mapfile in maps:
                with h5py.File(mapfile, 'r') as f:
                    row_map += f['map'][sfreq:efreq]

            # Calculate the alm's for the local sections
            row_alm = hputil.sphtrans_sky(row_map, lmax=lmax).reshape(
                (lfreq, npol * (lmax + 1), lmax + 1))

        else:
            row_alm = np.zeros((lfreq, npol * (lmax + 1), lmax + 1),
                               dtype=np.complex128)

        # Perform the transposition to distribute different m's across processes. Neat
        # tip, putting a shorter value for the number of columns, trims the array at
        # the same time
        col_alm = mpiutil.transpose_blocks(row_alm, (nfreq, npol *
                                                     (lmax + 1), mmax + 1))

        # Transpose and reshape to shift m index first.
        col_alm = np.transpose(col_alm,
                               (2, 0, 1)).reshape(lm, nfreq, npol, lmax + 1)

        # Create storage for visibility data
        vis_data = np.zeros((lm, nfreq, bt.ntel), dtype=np.complex128)

        # Iterate over m's local to this process and generate the corresponding
        # visibilities
        for mp, mi in enumerate(range(sm, em)):
            vis_data[mp] = bt.project_vector_sky_to_telescope(mi, col_alm[mp])

        # Rearrange axes such that frequency is last (as we want to divide
        # frequencies across processors)
        row_vis = vis_data.transpose(
            (0, 2, 1))  #.reshape((lm * bt.ntel, nfreq))

        # Parallel transpose to get all m's back onto the same processor
        col_vis_tmp = mpiutil.transpose_blocks(row_vis,
                                               ((mmax + 1), bt.ntel, nfreq))
        col_vis_tmp = col_vis_tmp.reshape(mmax + 1, 2, tel.npairs, lfreq)

        # Transpose the local section to make the m's the last axis and unwrap the
        # positive and negative m at the same time.
        col_vis[..., 0] = col_vis_tmp[0, 0]
        for mi in range(1, mmax + 1):
            col_vis[..., mi] = col_vis_tmp[mi, 0]
            col_vis[..., -mi] = col_vis_tmp[
                mi, 1].conj()  # Conjugate only (not (-1)**m - see paper)

        del col_vis_tmp

    ## If we're simulating noise, create a realisation and add it to col_vis
    if ndays > 0:

        # Fetch the noise powerspectrum
        noise_ps = tel.noisepower(np.arange(tel.npairs)[:, np.newaxis],
                                  np.array(local_freq)[np.newaxis, :],
                                  ndays=ndays).reshape(tel.npairs,
                                                       lfreq)[:, :, np.newaxis]

        # Seed random number generator to give consistent noise
        if seed is not None:
            # Must include rank such that we don't have massive power deficit from correlated noise
            np.random.seed(seed + mpiutil.rank)

        # Create and weight complex noise coefficients
        noise_vis = (np.array([1.0, 1.0J]) *
                     np.random.standard_normal(col_vis.shape +
                                               (2, ))).sum(axis=-1)
        noise_vis *= (noise_ps / 2.0)**0.5

        # Reset RNG
        if seed is not None:
            np.random.seed()

        # Add into main noise sims
        col_vis += noise_vis

        del noise_vis

    # Fourier transform m-modes back to get timestream.
    vis_stream = np.fft.ifft(col_vis, axis=-1) * ntime
    vis_stream = vis_stream.reshape(tel.npairs, lfreq, ntime)

    # The time samples the visibility is calculated at
    tphi = np.linspace(0, 2 * np.pi, ntime, endpoint=False)

    # Create timestream object
    tstream = Timestream(outdir, m)

    ## Iterate over the local frequencies and write them to disk.
    for lfi, fi in enumerate(local_freq):

        # Make directory if required
        if not os.path.exists(tstream._fdir(fi)):
            os.makedirs(tstream._fdir(fi))

        # Write file contents
        with h5py.File(tstream._ffile(fi), 'w') as f:

            # Timestream data
            f.create_dataset('/timestream', data=vis_stream[:, lfi])
            f.create_dataset('/phi', data=tphi)

            # Telescope layout data
            f.create_dataset('/feedmap', data=tel.feedmap)
            f.create_dataset('/feedconj', data=tel.feedconj)
            f.create_dataset('/feedmask', data=tel.feedmask)
            f.create_dataset('/uniquepairs', data=tel.uniquepairs)
            f.create_dataset('/baselines', data=tel.baselines)

            # Write metadata
            f.attrs['beamtransfer_path'] = os.path.abspath(bt.directory)
            f.attrs['ntime'] = ntime

    mpiutil.barrier()

    return tstream
Ejemplo n.º 4
0
    def redistribute(self, axis):
        """Change the axis that the array is distributed over.

        Parameters
        ----------
        axis : integer
            Axis to distribute over.

        Returns
        -------
        array : MPIArray
            A new copy of the array distributed over the specified axis. Note
            that the local section will have changed.
        """

        # Check to see if this is the current distributed axis
        if self.axis == axis or self.comm is None:
            return self

        # Test to see if the datatype is one understood by MPI, this can
        # probably be fixed up at somepoint by creating a datatype of the right
        # number of bytes
        try:
            mpiutil.typemap(self.dtype)
        except KeyError:
            if self.comm is None or self.comm.rank == 0:
                import warnings
                warnings.warn('Cannot redistribute array of compound datatypes. Sorry!!')
            return self

        # Construct the list of the axes to swap around
        axlist_f = list(range(len(self.shape)))

        # Remove the axes we are going to swap around
        axlist_f.remove(self.axis)
        axlist_f.remove(axis)

        # Move the current dist axis to the front, and the new to the end
        axlist_f.insert(0, self.axis)
        axlist_f.append(axis)

        # Perform a local transpose on the array to get the axes in the correct order
        trans_arr = self.view(np.ndarray).transpose(axlist_f).copy()

        # Perform the global transpose
        tmp_gshape = (self.global_shape[self.axis],) + trans_arr.shape[1:]
        trans_arr = mpiutil.transpose_blocks(trans_arr, tmp_gshape, comm=self.comm)

        axlist_b = list(range(len(self.shape)))
        axlist_b.pop(0)
        last = axlist_b.pop(-1)
        if self.axis < axis:  # This has to awkwardly depend on the order of the axes
            axlist_b.insert(self.axis, 0)
            axlist_b.insert(axis, last)
        else:
            axlist_b.insert(axis, last)
            axlist_b.insert(self.axis, 0)

        # Perform the local transpose to get the axes back in the correct order
        trans_arr = trans_arr.transpose(axlist_b)

        # Create a new MPIArray object out of the data
        dist_arr = MPIArray(self.global_shape, axis=axis, dtype=self.dtype, comm=self.comm)
        dist_arr[:] = trans_arr

        return dist_arr
Ejemplo n.º 5
0
def simulate(m, outdir, maps=[], ndays=None, resolution=0, seed=None, **kwargs):
    """Create a simulated timestream and save it to disk.

    Parameters
    ----------
    m : ProductManager object
        Products of telescope to simulate.
    outdir : directoryname
        Directory that we will save the timestream into.
    maps : list
        List of map filenames. The sum of these form the simulated sky.
    ndays : int, optional
        Number of days of observation. Setting `ndays = None` (default) uses
        the default stored in the telescope object; `ndays = 0`, assumes the
        observation time is infinite so that the noise is zero.
    resolution : scalar, optional
        Approximate time resolution in seconds. Setting `resolution = 0`
        (default) calculates the value from the mmax.

    Returns
    -------
    timestream : Timestream
    """

    ## Read in telescope system
    bt = m.beamtransfer
    tel = bt.telescope

    lmax = tel.lmax
    mmax = tel.mmax
    nfreq = tel.nfreq
    npol = tel.num_pol_sky

    projmaps = (len(maps) > 0)

    lfreq, sfreq, efreq = mpiutil.split_local(nfreq)
    local_freq = range(sfreq, efreq)

    lm, sm, em = mpiutil.split_local(mmax + 1)

    # If ndays is not set use the default value.
    if ndays is None:
        ndays = tel.ndays

    # Calculate the number of timesamples from the resolution
    if resolution == 0:
        # Set the minimum resolution required for the sky.
        ntime = 2*mmax+1
    else:
        # Set the cl
        ntime = int(np.round(24 * 3600.0 / resolution))


    col_vis = np.zeros((tel.npairs, lfreq, ntime), dtype=np.complex128)

    ## If we want to add maps use the m-mode formalism to project a skymap
    ## into visibility space.

    if projmaps:

        # Load file to find out the map shapes.
        with h5py.File(maps[0], 'r') as f:
            mapshape = f['map'].shape

        if lfreq > 0:

            # Allocate array to store the local frequencies
            row_map = np.zeros((lfreq,) + mapshape[1:], dtype=np.float64)

            # Read in and sum up the local frequencies of the supplied maps.
            for mapfile in maps:
                with h5py.File(mapfile, 'r') as f:
                    row_map += f['map'][sfreq:efreq]

            # Calculate the alm's for the local sections
            row_alm = hputil.sphtrans_sky(row_map, lmax=lmax).reshape((lfreq, npol * (lmax+1), lmax+1))

        else:
            row_alm = np.zeros((lfreq, npol * (lmax+1), lmax+1), dtype=np.complex128)

        # Perform the transposition to distribute different m's across processes. Neat
        # tip, putting a shorter value for the number of columns, trims the array at
        # the same time
        col_alm = mpiutil.transpose_blocks(row_alm, (nfreq, npol * (lmax+1), mmax+1))

        # Transpose and reshape to shift m index first.
        col_alm = np.transpose(col_alm, (2, 0, 1)).reshape(lm, nfreq, npol, lmax+1)

        # Create storage for visibility data
        vis_data = np.zeros((lm, nfreq, bt.ntel), dtype=np.complex128)

        # Iterate over m's local to this process and generate the corresponding
        # visibilities
        for mp, mi in enumerate(range(sm, em)):
            vis_data[mp] = bt.project_vector_sky_to_telescope(mi, col_alm[mp])

        # Rearrange axes such that frequency is last (as we want to divide
        # frequencies across processors)
        row_vis = vis_data.transpose((0, 2, 1))#.reshape((lm * bt.ntel, nfreq))

        # Parallel transpose to get all m's back onto the same processor
        col_vis_tmp = mpiutil.transpose_blocks(row_vis, ((mmax+1), bt.ntel, nfreq))
        col_vis_tmp = col_vis_tmp.reshape(mmax + 1, 2, tel.npairs, lfreq)


        # Transpose the local section to make the m's the last axis and unwrap the
        # positive and negative m at the same time.
        col_vis[..., 0] = col_vis_tmp[0, 0]
        for mi in range(1, mmax+1):
            col_vis[...,  mi] = col_vis_tmp[mi, 0]
            col_vis[..., -mi] = col_vis_tmp[mi, 1].conj()  # Conjugate only (not (-1)**m - see paper)


        del col_vis_tmp

    ## If we're simulating noise, create a realisation and add it to col_vis
    if ndays > 0:

        # Fetch the noise powerspectrum
        noise_ps = tel.noisepower(np.arange(tel.npairs)[:, np.newaxis], np.array(local_freq)[np.newaxis, :], ndays=ndays).reshape(tel.npairs, lfreq)[:, :, np.newaxis]


        # Seed random number generator to give consistent noise
        if seed is not None:
            # Must include rank such that we don't have massive power deficit from correlated noise
            np.random.seed(seed + mpiutil.rank)

        # Create and weight complex noise coefficients
        noise_vis = (np.array([1.0, 1.0J]) * np.random.standard_normal(col_vis.shape + (2,))).sum(axis=-1)
        noise_vis *= (noise_ps / 2.0)**0.5

        # Reset RNG
        if seed is not None:
            np.random.seed()

        # Add into main noise sims
        col_vis += noise_vis

        del noise_vis


    # Fourier transform m-modes back to get timestream.
    vis_stream = np.fft.ifft(col_vis, axis=-1) * ntime
    vis_stream = vis_stream.reshape(tel.npairs, lfreq, ntime)

    # The time samples the visibility is calculated at
    tphi = np.linspace(0, 2*np.pi, ntime, endpoint=False)

    # Create timestream object
    tstream = Timestream(outdir, m)

    ## Iterate over the local frequencies and write them to disk.
    for lfi, fi in enumerate(local_freq):

        # Make directory if required
        if not os.path.exists(tstream._fdir(fi)):
            os.makedirs(tstream._fdir(fi))

        # Write file contents
        with h5py.File(tstream._ffile(fi), 'w') as f:

            # Timestream data
            f.create_dataset('/timestream', data=vis_stream[:, lfi])
            f.create_dataset('/phi', data=tphi)

            # Telescope layout data
            f.create_dataset('/feedmap', data=tel.feedmap)
            f.create_dataset('/feedconj', data=tel.feedconj)
            f.create_dataset('/feedmask', data=tel.feedmask)
            f.create_dataset('/uniquepairs', data=tel.uniquepairs)
            f.create_dataset('/baselines', data=tel.baselines)

            # Write metadata
            f.attrs['beamtransfer_path'] = os.path.abspath(bt.directory)
            f.attrs['ntime'] = ntime

    tstream.save()

    mpiutil.barrier()

    return tstream
Ejemplo n.º 6
0
    def redistribute(self, axis):
        """Change the axis that the array is distributed over.

        Parameters
        ----------
        axis : integer
            Axis to distribute over.

        Returns
        -------
        array : MPIArray
            A new copy of the array distributed over the specified axis. Note
            that the local section will have changed.
        """

        # Check to see if this is the current distributed axis
        if self.axis == axis or self.comm is None:
            return self

        # Test to see if the datatype is one understood by MPI, this can
        # probably be fixed up at somepoint by creating a datatype of the right
        # number of bytes
        try:
            mpiutil.typemap(self.dtype)
        except KeyError:
            if self.comm is None or self.comm.rank == 0:
                import warnings
                warnings.warn(
                    'Cannot redistribute array of compound datatypes. Sorry!!')
            return self

        # Construct the list of the axes to swap around
        axlist_f = list(range(len(self.shape)))

        # Remove the axes we are going to swap around
        axlist_f.remove(self.axis)
        axlist_f.remove(axis)

        # Move the current dist axis to the front, and the new to the end
        axlist_f.insert(0, self.axis)
        axlist_f.append(axis)

        # Perform a local transpose on the array to get the axes in the correct order
        trans_arr = self.view(np.ndarray).transpose(axlist_f).copy()

        # Perform the global transpose
        tmp_gshape = (self.global_shape[self.axis], ) + trans_arr.shape[1:]
        trans_arr = mpiutil.transpose_blocks(trans_arr,
                                             tmp_gshape,
                                             comm=self.comm)

        axlist_b = list(range(len(self.shape)))
        axlist_b.pop(0)
        last = axlist_b.pop(-1)
        if self.axis < axis:  # This has to awkwardly depend on the order of the axes
            axlist_b.insert(self.axis, 0)
            axlist_b.insert(axis, last)
        else:
            axlist_b.insert(axis, last)
            axlist_b.insert(self.axis, 0)

        # Perform the local transpose to get the axes back in the correct order
        trans_arr = trans_arr.transpose(axlist_b)

        # Create a new MPIArray object out of the data
        dist_arr = MPIArray(self.global_shape,
                            axis=axis,
                            dtype=self.dtype,
                            comm=self.comm)
        dist_arr[:] = trans_arr

        return dist_arr