Ejemplo n.º 1
0
Archivo: geo.py Proyecto: ioam/geoviews
    def from_shapefile(cls, shapefile, *args, **kwargs):
        """
        Loads a shapefile from disk and optionally merges
        it with a dataset. See ``from_records`` for full
        signature.

        Parameters
        ----------
        records: list of cartopy.io.shapereader.Record
           Iterator containing Records.
        dataset: holoviews.Dataset
           Any HoloViews Dataset type.
        on: str or list or dict
          A mapping between the attribute names in the records and the
          dimensions in the dataset.
        value: str
          The value dimension in the dataset the values will be drawn
          from.
        index: str or list
          One or more dimensions in the dataset the Shapes will be
          indexed by.
        drop_missing: boolean
          Whether to drop shapes which are missing from the provides
          dataset.

        Returns
        -------
        shapes: Polygons or Path object
          A Polygons or Path object containing the geometries
        """
        reader = Reader(shapefile)
        return cls.from_records(reader.records(), *args, **kwargs)
Ejemplo n.º 2
0
 def from_shapefile(cls, shapefile, *args, **kwargs):
     """
     Loads a shapefile from disk and optionally merges
     it with a dataset. See ``from_records`` for full
     signature.
     """
     reader = Reader(shapefile)
     return cls.from_records(reader.records(), *args, **kwargs)
Ejemplo n.º 3
0
def distribution_geoaxes():
    from cartopy.mpl.geoaxes import GeoAxes
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from mpl_toolkits.axes_grid1 import AxesGrid

    projection = ccrs.PlateCarree()
    axes_class = (GeoAxes,
                  dict(map_projection=projection)) 
    fig = plt.figure(figsize=(16, 9))
    axgr = AxesGrid(fig, 111, axes_class=axes_class,
                    nrows_ncols=(2, 2),
                    axes_pad=0.2,
                    cbar_location='right',
                    cbar_mode='single',
                    cbar_pad=0.2,
                    cbar_size='2%',
                    label_mode='')  # note the empty label_mode

    doc_fp = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\SiteData\观测数据\GlcDOC\GlcDOC.shp'
    doc_data = gpd.read_file(doc_fp)
    sample_type_list = ['snow', 'snow_pit', 'ice', 'ice_core']
    for i, ax in enumerate(axgr):
        print(sample_type_list[i])
        sample_type = sample_type_list[i]
        data_type = doc_data[doc_data.Type==sample_type_list[i]]
        lons, lats = data_type.CorrPt_x, data_type.CorrPt_y
        
        # Tibetan plateau
        # tp_fp = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\Shapefile\TP_counties\TP_counties.shp'
        tp_fp = r'I:\Qinghai_Tibet_Plateau\青藏高原范围与界线数据\DBATP\DBATP\DBATP_Polygon.shp'
        tp_counties_fp = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\Shapefile\TP_counties\TP_counties_wgs84.shp'
        tp_shape_feature = ShapelyFeature(Reader(tp_fp).geometries(), ccrs.PlateCarree(), facecolor="#F6F7FC") # facecolor='#F6F7FC'
        tp_counties_shape_feature = ShapelyFeature(Reader(tp_counties_fp).geometries(), ccrs.PlateCarree(), facecolor="#F6F7FC")

        ax.add_feature(cfeature.LAND, facecolor='#E7E2DF',zorder=1)
        ax.add_feature(cfeature.OCEAN, zorder=2)
        ax.add_feature(cfeature.COASTLINE, zorder=3)
        # ax.add_feature(cfeature.BORDERS, linestyle='-')
        ax.add_feature(cfeature.LAKES, alpha=0.5, zorder=4)
        # ax.add_feature(cfeature.RIVERS, zorder=5)
        ax.set_extent([73, 105, 40, 25.5], crs=ccrs.PlateCarree())

        # ax.set_xticks(np.linspace(-180, 180, 5), crs=projection)
        # ax.set_yticks(np.linspace(-90, 90, 5), crs=projection)
        lon_formatter = LongitudeFormatter(zero_direction_label=True)
        lat_formatter = LatitudeFormatter()
        ax.xaxis.set_major_formatter(lon_formatter)
        ax.yaxis.set_major_formatter(lat_formatter)
        ax.add_feature(tp_shape_feature, edgecolor='gray', zorder=6)
        ax.add_feature(tp_counties_shape_feature, edgecolor='gray', zorder=6.5)
        cmap = mpl.cm.rainbow
        s = ax.scatter(lons, lats, c=data_type.DOC, cmap=cmap, vmin=0.15, vmax=2.7, transform=ccrs.PlateCarree(), zorder=7)
        ax.annotate(sample_type_dict[sample_type], xy=(10, 10), xycoords='axes points',
                    fontsize=14,
                    zorder=8)
    axgr.cbar_axes[0].colorbar(s)
    # fig.colorbar(s, shrink=0.6, location='right', extend='both')
    plt.show()
Ejemplo n.º 4
0
def doc_distribution():
    fig = plt.figure(figsize=(12.8, 5.4), constrained_layout=True)
    # subfigs = fig.subfigures(1, 2, wspace=0.07)
    # doc_fp = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\SiteData\观测数据\GlcDOC\GlcDOC.shp'
    doc_fp = r'I:\Data\DOC\Shapefile\GlcDOCMean\GlcDOCMean.shp'
    doc_data = gpd.read_file(doc_fp)
    sample_type_list = ['sonw', 'snow_pit', 'ice', 'ice_core']
    sample_type_dict = {
        'snow'    : "Snow",
        'snow_pit': 'Snow Pit',
        'ice'     : 'Ice',
        'ice_core': 'Ice Core'
    }
    axes = []
    for index, sample_type in enumerate(sample_type_dict.keys()):
        ax = fig.add_subplot(2, 2, index+1, projection=ccrs.PlateCarree())
        axes.append(ax)
        ax.set_extent([73, 105, 40, 25.5], crs=ccrs.PlateCarree())

        # Tibetan plateau
        # tp_fp = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\Shapefile\TP_counties\TP_counties.shp'
        tp_fp = r'I:\Qinghai_Tibet_Plateau\青藏高原范围与界线数据\DBATP\DBATP\DBATP_Polygon.shp'
        line_32 = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\Shapefile\32N\32N.shp'
        tp_counties_fp = r'I:\Qinghai_Tibet_Plateau\GlcAnysis\Shapefile\TP_counties\TP_counties_wgs84.shp'
        tp_shape_feature = ShapelyFeature(Reader(tp_fp).geometries(), ccrs.PlateCarree(), facecolor="#F6F7FC") # facecolor='#F6F7FC'
        tp_counties_shape_feature = ShapelyFeature(Reader(tp_counties_fp).geometries(), ccrs.PlateCarree(), facecolor="#F6F7FC")
        line_32_feature = ShapelyFeature(Reader(line_32).geometries(), ccrs.PlateCarree(), facecolor="#F6F7FC")

        ax.add_feature(cfeature.LAND, facecolor='#E7E2DF', zorder=1)
        ax.add_feature(cfeature.OCEAN, zorder=2)
        ax.add_feature(cfeature.COASTLINE, zorder=3)
        # ax.add_feature(cfeature.BORDERS, linestyle='-')
        ax.add_feature(cfeature.LAKES, alpha=0.5, zorder=4)
        # ax.add_feature(cfeature.RIVERS, zorder=5)
        # ax.add_feature(states_provinces, edgecolor='gray')
        ax.add_feature(tp_shape_feature, edgecolor='gray', zorder=6)
        # ax.add_feature(tp_counties_shape_feature, edgecolor='gray', zorder=6.5)
        ax.add_feature(line_32_feature, edgecolor='black', linestyle='--', alpha=0.5, zorder=7)

        data_type = doc_data[doc_data.Type==sample_type]
        lons, lats = data_type.Lon, data_type.Lat
        cmap = mpl.cm.rainbow
        s = ax.scatter(lons, lats, c=data_type['DOC_mg_L_'], s=50, cmap=cmap, vmin=0.15, vmax=2.7, transform=ccrs.PlateCarree(), zorder=7)
        # ax.annotate(sample_type_dict[sample_type], xy=(10, 10), xycoords='axes points',
        #             fontsize=14,
        #             zorder=8)
        text = AnchoredText(sample_type_dict[sample_type], loc=3, prop={'size': 12}, frameon=True)
        ax.add_artist(text)
        ax.annotate("32°N", xy=(10, 88), xycoords='axes points',
                    fontsize=14,
                    zorder=8)
    # fig.tight_layout(pad=1, w_pad=0.29, h_pad=0.64)
    # plt.subplots_adjust(wspace=0.01, hspace=0.5) # 调整子图间距
    # norm = mpl.colors.Normalize(vmin=0.15, vmax=2.7)
    fig.colorbar(s, ax=axes,  location='right', shrink=0.5, extend='both', pad=0.01)
    # plt.colorbar(cax=data_type)
    plt.show()
    return
Ejemplo n.º 5
0
 def shelf(self):
     """returns Mueller ice shelf as :class:`shapely.geometry.Polygon` based on :attr:`coastline_file`"""
     R = Reader(os.path.join(self.path, self.coastline_file))
     recs = [r for r in R.records() if r.attributes['FID_Coastl'] in self.shelf_features]
     # order is important
     geoms = [[r.geometry for r in recs if r.attributes['FID_Coastl']==f][0] for f in self.shelf_features]
     pts = np.hstack([np.r_['1,2', p.xy] for g in geoms for p in g.geoms]).T.tolist()
     # important! planar geometry ('False')
     # https://developers.google.com/earth-engine/geometries_planar_geodesic
     return ee.Geometry.Polygon(pts, 'EPSG:{}'.format(self.quanta_epsg), False)
def plot_basic_cappi(path, filename, level, shape_rivers, shape_states):
    """

    """
    radar = read_sipam_cappi(filename)
    date = pyart.util.datetime_from_grid(radar)
    str_level = str(radar.z["data"][level] / 1000)

    fig = plt.figure(figsize=(8, 7))
    ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
    display = pyart.graph.GridMapDisplay(radar)
    display.plot_grid("DBZc",
                      level=level,
                      vmin=0,
                      vmax=70,
                      ax=ax,
                      cmap="dbz",
                      embelish=False)
    ax.add_geometries(
        Reader(path + shape_rivers).geometries(),
        ccrs.PlateCarree(),
        linewidth=0.75,
        facecolor="None",
        edgecolor="darkblue",
        alpha=0.3,
    )
    ax.add_geometries(
        Reader(path + shape_states).geometries(),
        ccrs.PlateCarree(),
        linewidth=0.75,
        facecolor="None",
        edgecolor="darkgray",
        alpha=0.8,
    )
    gl = ax.gridlines(
        crs=ccrs.PlateCarree(),
        draw_labels=True,
        xlocs=np.arange(-70, -50, 1),
        ylocs=np.arange(-10, 1, 1),
    )
    gl.top_labels = gl.right_labels = False
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER

    plt.savefig(
        path + "radar_processing/figs/sipam_cappi/sipam_" + str_level +
        "_dBZ_" + date.strftime("%Y%m%d%H%M%S") + ".png",
        bbox_inches="tight",
        dpi=300,
        facecolor="None",
        edgecolor="white",
    )
    plt.close()

    print("Plotted! " + str(date) + " - " + str_level + " km")
    def obtain_map_info(self, path):
        """ Return the records (record = (attributes, geometry)) of the shapefile

        Parameters :
        - path = path of the shapefile to read

        CountryMap(*args).obtain_map_info() ==> record :->generator"""
        self.path_shp_commune = path
        reader = Reader(path)
        records = reader.records()
        return records
Ejemplo n.º 8
0
def make_african_land():
    from cartopy.io.shapereader import Reader, natural_earth
    from shapely.ops import unary_union

    shpfile = Reader(natural_earth(resolution='110m', category='cultural', name='admin_0_countries'))

    filtered_records = shpfile.records()
    filtered_records = filter(lambda x: x.attributes['continent'] == 'Africa', filtered_records)

    region_poly = unary_union([r.geometry for r in filtered_records])

    return region_poly
Ejemplo n.º 9
0
def plot(h):
    msg_folder = cnst.GRIDSAT_PERU
    htag1 = str(h).zfill(2) + 'UTC_2010-2017'
    p1 = 'aggs/gridsat_WA_-40C_climatology_mean_mf_'+htag1+'.nc'
    dat1 = xr.open_dataset(msg_folder + p1)
    #ipdb.set_trace()
    month1 = dat1['tir']

    htag2 = str(h).zfill(2) + 'UTC_1985-1993'
    p2 = 'aggs/gridsat_WA_-40C_climatology_mean_mf_'+htag2+'.nc'
    dat2 = xr.open_dataset(msg_folder + p2)
    month2 = dat2['tir']


    for d, tag in [(month1, htag1), (month2,htag2)]:
        d = d.sel(lon=slice(-79, -74), lat=slice(-12, -7))
        simple = d.plot(x='lon', y='lat', col='month', col_wrap=4, cmap='jet', transform=ccrs.PlateCarree(),
                            subplot_kws={'projection': ccrs.PlateCarree()}, vmax=-40, vmin=-65, levels=10,
                            extend='both')

        for ax in simple.axes.flat:
            ax.coastlines()
            ax.gridlines()
            ax.plot(-77.55, -9.51, 'ko')
            # ax.set_extent([-17.5, 30, -6, 20])
            ax.set_aspect('equal', 'box-forced')

        plt.savefig(cnst.network_data + '/figs/HUARAZ/mean_t_' + tag + '_small.png', dpi=300)

    fname = '/home/ck/DIR/cornkle/data/HUARAZ/shapes/riosan_sel_one.shp'

    shape_feature = ShapelyFeature(Reader(fname).geometries(),
                                   ccrs.PlateCarree(), facecolor='none')


    diff = month1-month2
    diff = diff.sel(lon=slice(-79,-74), lat=slice(-12,-7))
    simple = diff.plot(x='lon', y='lat', col='month', col_wrap=4, cmap='RdBu_r', transform=ccrs.PlateCarree(),
                    subplot_kws={'projection': ccrs.PlateCarree()}, vmax=5, vmin=-5, levels=10,
                    extend='both')

    for ax in simple.axes.flat:
        ax.coastlines()
        ax.gridlines()
        # ax.set_extent([-17.5, 30, -6, 20])
        ax.set_aspect('equal', 'box-forced')
        ax.add_feature(shape_feature)
        ax.add_geometries(Reader(fname).geometries(),
                          ccrs.PlateCarree(),
                          facecolor='white', hatch='xxxx')

    plt.savefig(cnst.network_data + '/figs/HUARAZ/mean_t_diff_fistlast8years_16UTC_small.png', dpi=300)
    plt.close('all')
Ejemplo n.º 10
0
    def maskcountries(self,
                      conf,
                      ax=None,
                      regions=["China"],
                      pathkw=dict(facecolor='none',
                                  edgecolor='black',
                                  linewidth=1.5)):
        """
        在cartopy中, 对选定的国家进行白化.
        refer to https://cloud.tencent.com/developer/article/1618341

        Args:
            conf (matplotlib object): matplotlib的contour或contourf绘图返回值.
            ax (object, optional): Axes instance, if not None then overrides the default axes instance.
            regions (list, optional): 指定无需白化的国家. Defaults to ["China"].
            pathkw (dict, optional): PathPatch关键字参数. Defaults to dict(facecolor='none',edgecolor='black', linewidth=1.0).

        Returns:
            clipping path, matplotlib.patches.PathPatch
        """

        #Get current axes if not specified
        ax = ax or self._check_ax()

        #Convert region name to upper
        regions = list(regions)
        regions = [region.upper() for region in regions]

        # get shape file
        shpfile = pkg_resources.resource_filename(
            'nmc_met_graphics', "resources/maps/country1.shp")

        # retrive region geometry
        reader = Reader(shpfile)
        countries = reader.records()
        multipoly, = [
            country.geometry for country in countries
            if country.attributes['CNTRY_NAME'].upper() in regions
        ]

        main_geom = sorted(multipoly.geoms, key=lambda geom: geom.area)[-1]

        path, = geos_to_path(main_geom)

        plate_carre_data_transform = ccrs.PlateCarree()._as_mpl_transform(ax)

        for collection in conf.collections:
            collection.set_clip_path(path, plate_carre_data_transform)

        # Draw the path of interest.
        path = PathPatch(path, transform=ccrs.PlateCarree(), **pathkw)
        return path
Ejemplo n.º 11
0
    def plot_base(self, bous = 1, bmap = None, 
                  features = ['land','ocean','lake','river'], 
                  gridline = True, lic = True):
        """
        Plot map base

        Parameters
        ----------
        bous : TYPE, optional
            DESCRIPTION. The default is 1.
        bmap : TYPE, optional
            DESCRIPTION. The default is None.
        features : TYPE, optional
            DESCRIPTION. The default is ['land','ocean','lake','river'].
        gridline : TYPE, optional
            DESCRIPTION. The default is True.
        lic : TYPE, optional
            DESCRIPTION. The default is True.

        Returns
        -------
        None.

        """
        if self.engine == 'gmt':
            self.gmt_plot_base(self.region)
        else:
            self.fig.set_extent([72, 137, 10, 55])
            self.fig.stock_img()
            self.fig.coastlines()
            self.fig.add_feature(cfeature.LAND)
            self.fig.add_feature(cfeature.OCEAN)
            self.fig.add_feature(cfeature.LAKES)
            self.fig.add_feature(cfeature.RIVERS)
            self.fig.gridlines(crs=ccrs.PlateCarree(), draw_labels=True)
            datapath = Path(Path(catalog.__file__).parent,'data')
            fname = Path(datapath, 'bou1_4l.shp')
            f2name = Path(datapath, 'bou2_4l.shp')
            faults = Path(datapath, 'gem_active_faults.shp')
            
            self.fig.add_geometries(Reader(str(faults)).geometries(),
                              ccrs.PlateCarree(),facecolor = 'none',
                              edgecolor='red')
            
            self.fig.add_geometries(Reader(str(f2name)).geometries(),
                              ccrs.PlateCarree(),  facecolor = 'none', 
                              edgecolor='gray', linestyle=':')
            
            self.fig.add_geometries(Reader(str(fname)).geometries(),
                              ccrs.PlateCarree(),  facecolor = 'none', 
                              edgecolor='black')            
Ejemplo n.º 12
0
def addFeatures(fname):
    f = Reader(fname)
    for item in f.records():
        attributes = item.attributes
        geometry = item.geometry
        facecolor, edgecolor, alpha = categorizeBWS_s(attributes, column,
                                                      categories)

        feature = ShapelyFeature(geometry,
                                 ccrs.PlateCarree(),
                                 facecolor=facecolor,
                                 edgecolor=edgecolor,
                                 alpha=alpha)
        ax.add_feature(feature)
Ejemplo n.º 13
0
def make_np_mask(target_header):
    """Generate mask of cells that are in Redwood National Park"""

    rdr = Reader(os.path.join("InputData", "nps_boundary", "nps_boundary.shp"))
    redw_records = []
    for x in rdr.records():
        if 'Redwood' in x.attributes['UNIT_NAME']:
            redw_records.append(x)

    redw_shape_nps = redw_records[0].geometry[0]

    NAD83_Cali_Albers = pyproj.Proj("+init=EPSG:3310")
    nps_proj = pyproj.Proj("+init=EPSG:4269")

    project = partial(pyproj.transform, nps_proj, NAD83_Cali_Albers)

    redw_shape = transform(project, redw_shape_nps)

    lower_x = np.array([
        target_header['xllcorner'] + i * target_header['cellsize']
        for i in range(target_header['ncols'])
    ])
    upper_x = lower_x + target_header['cellsize']

    lower_y = np.array([
        target_header['yllcorner'] + i * target_header['cellsize']
        for i in range(target_header['nrows'])
    ])[::-1]
    upper_y = lower_y + target_header['cellsize']

    np_array = np.zeros((target_header['nrows'], target_header['ncols']))

    for i in range(target_header['nrows']):
        for j in range(target_header['ncols']):
            points = [[lower_x[j], lower_y[i]], [upper_x[j], lower_y[i]],
                      [upper_x[j], upper_y[i]], [lower_x[j], upper_y[i]]]
            cell = geometry.Polygon(points)
            intersection_area = redw_shape.intersection(cell).area / (
                target_header['cellsize'] * target_header['cellsize'])

            np_array[i, j] = intersection_area

    np_raster = raster_tools.RasterData(
        (target_header['nrows'], target_header['ncols']),
        (target_header['xllcorner'], target_header['yllcorner']),
        target_header['cellsize'],
        array=np_array)

    return np_raster
Ejemplo n.º 14
0
def shpplt(shp,
           colors,
           ax=None,
           crs=ccrs.PlateCarree(),
           field='type',
           numbered=True,
           **kwargs):
    """
    Plot polygon .shp file from path using variable colors.
    
    Requires that .shp file have field with numerical values that
    will correspond to color.
    
    Parameters:
        shp: Path to .shp file
        colors: List or dict of colors corresponding to field in .shp file
        ax: Axes on which to plot polygon
        crs: Cartopy projection for .shp file
        field: Name of field with values used for color
    
    Retruns:
        df: Pandas dataframe of attribute table from .shp file
    """
    reader = Reader(shp)  # Creates reader object
    units = reader.records()  # Gets records from reader object
    lst = []  # Set up empty list

    for unit in units:  # Iterate over each object in .shp file
        # Get type number from attributes to assign color, requires 'type'
        # field in imported .shp file
        t = unit.attributes[field]
        geo = unit.geometry  # Get geometry to plot

        # Plot geometry using field attribute to assign color

        # If field sequential integers, adapt for Python counting
        if numbered is True:
            ax.add_geometries([geo], crs, facecolor=colors[t - 1], **kwargs)
        # If field non-sequential, use color dictionary
        elif numbered is False:
            ax.add_geometries([geo], crs, facecolor=colors[t], **kwargs)

        # Add attributes to list to create dataframe
        lst.append(unit.attributes)

    df = pd.DataFrame.from_records(lst)  #create dataframe of attribute table

    return (df)
Ejemplo n.º 15
0
def mapa_base(llat, llon):
    """
    Mapa base para graficar las variables
    """

    l_lat = llat
    l_lon = np.array(llon) % 360  #Pasamos lon en [-180, 180] a [0, 360]
    states_provinces = cpf.NaturalEarthFeature(category='cultural',
                            name='admin_1_states_provinces_lines',
                            scale='10m',
                            facecolor='none')
    shp = Reader(natural_earth(resolution='10m', category='cultural',
                               name='admin_1_states_provinces_lines'))
    countries = shp.records()

    # Comenzamos la Figura
    fig = plt.figure(figsize=(6, 8))
    proj_lcc = ccrs.PlateCarree()
    ax = plt.axes(projection=proj_lcc)
    ax.coastlines(resolution='10m')
    ax.add_feature(cpf.BORDERS, linestyle='-')
    #ax.add_feature(states_provinces, edgecolor='gray')
    for country in countries:
        if country.attributes['adm0_name'] == 'Argentina':
            ax.add_geometries( [country.geometry], ccrs.PlateCarree(),
                                edgecolor='black', facecolor='none',
                                linewidth=0.7 )
    # ax.add_feature(shape_feature)
    # Colocamos reticula personalizada
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
                      linewidth=0.4, color='gray', alpha=0.7, linestyle=':')
    gl.xlabels_top = False
    gl.ylabels_right = False
    gl.xlocator = mticker.FixedLocator(np.linspace(llon[0], llon[1], 7))
    gl.ylocator = mticker.FixedLocator(np.linspace(l_lat[0], l_lat[1], 9))
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER
    # Extension del mapa
    ax.set_extent([l_lon[0], l_lon[1], l_lat[0], l_lat[1]], crs=proj_lcc)
    # Posicion del eje (desplazamos un poco a la izquierda y más abajo)
    pos1 = ax.get_position() # get the original position
    pos2 = [pos1.x0 - 0.05, pos1.y0 - 0.06,  pos1.width*1.16, pos1.height*1.22]
    ax.set_position(pos2) # set a new position
    ax.text(-79., -21., 'Fuente:\n NOAA - GFS',
            horizontalalignment='left', verticalalignment='top',
            fontweight='bold', fontsize=13,
            transform=ccrs.Geodetic())
    return fig, ax
Ejemplo n.º 16
0
def cartoplot_schools(mapsize, shapefile, data):

    # Create a Stamen terrain background instance
    stamen_terrain = cimgt.Stamen('terrain-background')
    fig = plt.figure(figsize=(mapsize, mapsize))
    ax = fig.add_subplot(1, 1, 1, projection=stamen_terrain.crs)

    # Set range of map, stipulate zoom level
    ax.set_extent([-122.7, -121.5, 37.15, 38.15], crs=ccrs.Geodetic())
    ax.add_image(stamen_terrain, 12, zorder=0)

    # set up colormap
    from matplotlib import cm
    import matplotlib.colors
    cmap = cm.get_cmap('seismic_r', 100)
    norm = matplotlib.colors.Normalize(vmin=min(data['School score']),
                                       vmax=max(data['School score']))
    color = cmap(norm(data['School score'].values))

    # add colorbar
    n_cmap = cm.ScalarMappable(norm=norm, cmap='seismic_r')
    n_cmap.set_array([])
    cax = fig.add_axes([0.185, 0.15, 0.02, 0.25])
    cbar = ax.get_figure().colorbar(n_cmap, cax)

    # set colorbar label, properties
    cbar.set_label('School score\n(% proficient)',
                   rotation=0,
                   labelpad=15,
                   y=0.55,
                   ha='left')
    cbar.ax.tick_params(labelsize=16)
    cax.yaxis.set_ticks_position('left')
    text = cax.yaxis.label
    font = matplotlib.font_manager.FontProperties(family='Helvetica', size=20)
    text.set_font_properties(font)
    for tick in cbar.ax.yaxis.get_ticklabels():
        tick.set_family('Helvetica')

    # add shapefile features
    shape_feature = ShapelyFeature(Reader(shapefile).geometries(),
                                   ccrs.epsg(26910),
                                   linewidth=2)

    # Add commute data by zip code
    for counter, geom in enumerate(shape_feature.geometries()):
        if data['Area'][counter] < 50:
            if data['Population'][counter] > 500:
                ax.add_geometries([geom],
                                  crs=shape_feature.crs,
                                  facecolor=color[counter],
                                  edgecolor='k',
                                  alpha=0.8)
        else:
            continue

    # save figure, show figure
    fig = plt.gcf()
    plt.savefig('schools_plot.jpg', bbox_inches='tight', dpi=600)
    plt.show()
Ejemplo n.º 17
0
def add_river_shapes(ax, city, crs=None):
    data_dir = Path(__file__).parent.parent / "canvec_250K"

    city_to_province = {
        "Toronto": "ON",
        "Montreal": "QC",
        "Ottawa-Gatineau": "ON",
        "Vancouver": "BC",
        "Calgary": "AB",
        "Edmonton": "AB",
        "Winnipeg": "MB",
        "Halifax": "NS",
        "Saskatoon": "SK",
        "Moncton": "NB",
        "Charlottetown": "PE",
        "St Johns": "NL"
    }

    params = dict(facecolor=feature.COLORS["water"], linewidth=0)
    for province_dir in data_dir.iterdir():
        if province_dir.is_dir(
        ) and city_to_province[city] in province_dir.name:
            for f in (province_dir / province_dir.name[:-4]).iterdir():
                if f.name.startswith("waterbody_2") and f.name.endswith(
                        ".shp"):
                    ax.add_geometries(
                        Reader(str(f)).geometries(), crs, **params)
def plot_basic_ppi(path, filename, level, shape_rivers, shape_states):
    """

    """

    radar = pyart.aux_io.read_gamic(filename)
    date = pyart.util.datetime_from_grid(radar)
    str_level = str("%.1f" % radar.fixed_angle["data"][level])

    fig = plt.figure(figsize=(8, 7))
    ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
    display = pyart.graph.RadarMapDisplay(radar)
    display.plot_ppi_map(
        "corrected_reflectivity",
        sweep=level,
        vmin=0,
        vmax=70,
        ax=ax,
        cmap="dbz",
        shapefile=path + shape_rivers,
        shapefile_kwargs={
            "facecolor": "None",
            "edgecolor": "darkblue",
            "alpha": 0.3,
            "linewidth": 0.75,
        },
    )
    ax.add_geometries(
        Reader(path + shape_states).geometries(),
        ccrs.PlateCarree(),
        linewidth=0.75,
        facecolor="None",
        edgecolor="gray",
        alpha=0.8,
    )
    gl = ax.gridlines(
        crs=ccrs.PlateCarree(),
        draw_labels=True,
        xlocs=np.arange(-70, -50, 1),
        ylocs=np.arange(-10, 1, 1),
    )
    gl.top_labels = gl.right_labels = False
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER
    display.plot_range_rings([50, 100, 150, 200, 250],
                             ax=ax,
                             col="lightgray",
                             lw=1)

    plt.savefig(
        path + "radar_processing/figs/sipam_ppi/sipam_" + str_level + "_dBZ_" +
        date.strftime("%Y%m%d%H%M%S") + ".png",
        bbox_inches="tight",
        dpi=300,
        facecolor="None",
        edgecolor="white",
    )
    plt.close()

    print("Plotted! " + str(date) + " - " + str_level + "°")
Ejemplo n.º 19
0
def get_geometries_ocean(name0):
    """
    Get an iterable of Shapely geometries corrresponding to given countries.

    """
    # Using the Natural Earth feature interface provided by cartopy.
    # You could use a different source, all you need is the geometries.
    print(name0)
    shape_records = Reader(
        shpreader.natural_earth(resolution='110m',
                                category='Physical',
                                name='ocean')).records()
    geoms = []
    names = []
    for country in shape_records:
        try:
            geoms += country.geometry
        except TypeError:
            geoms.append(country.geometry)
    if name0 == 'MPac':
        geoms = add_country(geoms, 'Taiwan')

    if name0 == 'SCSPhi':
        geoms = add_country(geoms, 'Philippines')

    for i in range(len(geoms)):
        names.append(name0)
    return geoms, ccrs.PlateCarree()._as_mpl_transform, names
Ejemplo n.º 20
0
def add_china_map_2cartopy(ax, name='province', facecolor='none',
                           edgecolor='c', lw=2, **kwargs):
    """
    Draw china boundary on cartopy map.

    :param ax: matplotlib axes instance.
    :param name: map name.
    :param facecolor: fill color, default is none.
    :param edgecolor: edge color.
    :param lw: line width.
    :return: None
    """

    # map name
    names = {'nation': "bou1_4p", 'province': "bou2_4p",
             'county': "BOUNT_poly", 'river': "hyd1_4l",
             'river_high': "hyd2_4l"}

    # get shape filename
    shpfile = pkg_resources.resource_filename(
        'dk_met_graphics', "resources\\maps\\" + names[name] + ".shp")

    # add map
    ax.add_geometries(
        Reader(shpfile).geometries(), ccrs.PlateCarree(),
        facecolor=facecolor, edgecolor=edgecolor, lw=lw, **kwargs)
Ejemplo n.º 21
0
def plot_breakup_images(paths_2007, paths_2012, paths_2019, coastline_path, lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD, fontsz, figsz):
    '''
    This function plots n images from 2007, 2012, and 2019 Kotzebue Sound breakups in a 3xn grid


    '''
    gdal.UseExceptions()

    cols = len(paths_2007)
    coastline = ShapelyFeature(Reader(coastline_path).geometries(),ccrs.PlateCarree())

    #extract coordinate system from first file to be used as projection of all subplots
    fname = paths_2007[0]
    ds = gdal.Open(fname)
    proj = ds.GetProjection()
    inproj = osr.SpatialReference()
    inproj.ImportFromWkt(proj)
    projcs = inproj.GetAuthorityCode('PROJCS')
    projection = ccrs.epsg(projcs)
    subplot_kw = dict(projection=projection)
    #initialize figure
    fig, axx = plt.subplots(nrows=3, ncols=cols, figsize=figsz, subplot_kw=subplot_kw, facecolor='w')
    fig.suptitle('Satellite Imagery of the Sea Ice Breakup Process in Kotzebue Sound',y=0.95,fontsize=40)

    for idx in np.arange(0,cols):
        plot_MODIS_geotiff(axx[0,idx], paths_2007[idx], coastline, lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD )
        plot_MODIS_geotiff(axx[1,idx], paths_2012[idx], coastline, lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD )
        plot_MODIS_geotiff(axx[2,idx], paths_2019[idx], coastline, lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD )

        axx[0,idx].add_patch(patches.Ellipse(xy=(-162.6139,66.8968), width=1.1, height=0.44, edgecolor='r', linewidth=4, transform=ccrs.PlateCarree(), facecolor='none',zorder=400))
        axx[1,idx].add_patch(patches.Ellipse(xy=(-162.6139,66.8968), width=1.1, height=0.44, edgecolor='r', linewidth=4, transform=ccrs.PlateCarree(), facecolor='none',zorder=400))
        axx[2,idx].add_patch(patches.Ellipse(xy=(-162.6139,66.8968), width=1.1, height=0.44, edgecolor='r', linewidth=4, transform=ccrs.PlateCarree(), facecolor='none',zorder=400))


    for idx in np.arange(0,cols-1):
        for row in np.arange(0,3):
            con = ConnectionPatch(xyA=(1,0.5), coordsA=axx[row,idx].transAxes,
                                  xyB=(0,0.5), coordsB=axx[row,idx+1].transAxes,
                                  arrowstyle='->',linewidth=6,mutation_scale=50)
            fig.add_artist(con)


    axx[0,0].set_title('May 24',fontsize=fontsz)
    axx[0,1].set_title('June 1',fontsize=fontsz)
    axx[0,2].set_title('June 5',fontsize=fontsz)
    axx[0,3].set_title('June 11',fontsize=fontsz)

    axx[1,0].set_title('May 24',fontsize=fontsz)
    axx[1,1].set_title('May 31',fontsize=fontsz)
    axx[1,2].set_title('June 7',fontsize=fontsz)
    axx[1,3].set_title('June 16',fontsize=fontsz)

    axx[2,0].set_title('April 23',fontsize=fontsz)
    axx[2,1].set_title('May 10',fontsize=fontsz)
    axx[2,2].set_title('May 16',fontsize=fontsz)
    axx[2,3].set_title('May 25',fontsize=fontsz)

    plt.figtext(x=0.1,y=0.745,s='2007',rotation=90,fontsize=40)
    plt.figtext(x=0.1,y=0.475,s='2012',rotation=90,fontsize=40)
    plt.figtext(x=0.1,y=0.21,s='2019',rotation=90,fontsize=40)
Ejemplo n.º 22
0
def plot_polygons(regions):
    """
    extract the polygon coordinate and plot it on a worldmap

    :param regions: list of ISO abreviations for polygons

    :return png: map_graphic.png
    """

    from cartopy.io.shapereader import Reader
    from cartopy.feature import ShapelyFeature
    from os.path import curdir, abspath

    from flyingpigeon import config
    DIR_SHP = config.shapefiles_dir()

    if type(regions) == str:
        regions = list([regions])

    fname = join(DIR_SHP, "countries.shp")
    geos = Reader(fname).geometries()
    records = Reader(fname).records()

    LOGGER.debug('')

    fig = plt.figure(figsize=(10, 10), facecolor='w',
                     edgecolor='k')  # dpi=600,
    projection = ccrs.Orthographic(central_longitude=0.0,
                                   central_latitude=0.0,
                                   globe=None)  # Robinson()
    ax = plt.axes(projection=projection)

    for r in records:
        geo = geos.next()
        if r.attributes['ISO_A3'] in regions:
            shape_feature = ShapelyFeature(geo,
                                           ccrs.PlateCarree(),
                                           edgecolor='black')
            ax.add_feature(shape_feature)
        ax.coastlines()
        # ax.set_global()

    o1, map_graphic = mkstemp(dir=abspath(curdir), suffix='.png')
    fig.savefig(map_graphic)
    plt.close()

    return map_graphic
Ejemplo n.º 23
0
def plot_may2019_image(image_path, image_2path, coastline_path, river_path, figsz, lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD, sis_color, obt_color, fontsz):
    '''
    Function to plot simple map of the locations and deployment durations of the OBT and SIS
    '''
    gdal.UseExceptions()

    coastline = ShapelyFeature(Reader(coastline_path).geometries(),ccrs.PlateCarree())
    river = ShapelyFeature(Reader(river_path).geometries(),ccrs.PlateCarree())

    #open tiff file and extract data, geotransform, and crs
    ds = gdal.Open(image_path)
    data = ds.ReadAsArray()
    gt = ds.GetGeoTransform()
    proj = ds.GetProjection()

    inproj = osr.SpatialReference()
    inproj.ImportFromWkt(proj)
    projcs = inproj.GetAuthorityCode('PROJCS')
    projection = ccrs.epsg(projcs)
    subplot_kw = dict(projection=projection)

    #initialize figure
    fig, axx = plt.subplots(figsize=figsz, subplot_kw=subplot_kw)

    extent = (gt[0], gt[0] + ds.RasterXSize * gt[1],
                  gt[3] + ds.RasterYSize * gt[5], gt[3])

    img = axx.imshow(data[:3, :, :].transpose((1, 2, 0)), extent=extent,
                    origin='upper')

    axx.set_extent([lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD])

    plot_MODIS_geotiff(axx,image_2path, coastline, lon_min_MOD, lon_max_MOD, lat_min_MOD, lat_max_MOD)

    #add coastlines and features
    axx.add_feature(coastline,zorder=300, edgecolor='k', facecolor='#efebd3', alpha=1)
    axx.add_feature(river,zorder=350, edgecolor='#46d3f6', facecolor='none', alpha=1,linewidth=4)

    #add data source to map
    axx.text(0.006, 0.01, ' Satellite Image From \n MODIS Visible, \n May 7 2019', fontsize=18, fontname='Calibri', horizontalalignment='left', verticalalignment='bottom', transform=axx.transAxes,
             bbox=dict(boxstyle='square,pad=0.15', facecolor='w', alpha=0.8),zorder=400)

    #label features on plot
    axx.text(0.7, 0.475, 'Kobuk \n River', fontsize=18, transform=axx.transAxes, zorder=400)
    axx.text(0.46, 0.75, 'Noatak \n River', fontsize=18, transform=axx.transAxes, zorder=400)
    axx.text(0.538, 0.545, 'Kotzebue', fontsize=13, transform=axx.transAxes, zorder=400)
    axx.add_patch(patches.Arrow(x=0.55, y=0.56, dx=-0.018, dy=0.03, width=0.01, facecolor='k',transform=axx.transAxes,zorder=400));
Ejemplo n.º 24
0
def plot_cmaq(monthly_tot,var_tot,title_2,cmap,vmaxs,vmins,crs_new,show,add_epa,version,div,shaped):
   for i in range(0,len(monthly_tot)):
   #for i in range(1):
      # set var for plot
      var= var_tot[i]
      data= np.asarray(monthly_tot[i])
      if var == 'RAINC': pass
      else:
         if i<len(cmaq_var): plon,plat = lon,lat
         else: plon,plat = wlon,wlat
         # make fig object
         fig, axs = plt.subplots(subplot_kw={'projection': crs_new},figsize=(6, 6))
         #set up data for plotting via levels
         vmax,vmin=vmaxs[i],vmins[i]
#for i in range(1):
         levels = np.arange(vmin, vmax, (vmax-vmin)/10)
         # set boundary as outer extent by making a matplotlib path object and adding that geometry
         if shaped: axs.set_boundary(mpath.Path(outsideofunion.T,closed=True), transform= crs_new, use_as_clip_path=True)
         axs.add_geometries(Reader(path).geometries(), crs=crs_new,facecolor='None', edgecolor='black')
         #plot the gridded data by using contourf
         if div==False: cs=plt.pcolormesh(plon,plat,data,cmap= cmap , transform=crs_new, vmin=vmin,vmax=vmax)
         if div == True:
               divnorm = colors.DivergingNorm(vmin=vmin, vcenter=0, vmax= vmax)
               cs=plt.pcolormesh(plon,plat,data,cmap= cmap , transform=crs_new, vmin=vmin,vmax=vmax, norm=divnorm)
#for i in range(1):
         # add landmarks with scatterplot
         midway=  -87.7522,41.7868
         ohare = -87.9073, 41.9842
         loop =  -87.6251,41.8786
         axs.annotate(xy=midway,s="*",color='white')
         axs.annotate(xy=ohare,s="*",color='white')
         axs.annotate(xy=loop,s="*",color='white')
         # set axes extents from shapefile
         x=[chi_shapefile.bounds.minx.min(), chi_shapefile.bounds.maxx.max()] 
         y=[chi_shapefile.bounds.miny.min(), chi_shapefile.bounds.maxy.max()]
         #
         if shaped: axs.set_extent([x[0],x[1],y[0],y[1]],crs= crs_new)
         else: axs.set_extent([x[0]-.3,x[1]+.3,y[0]-.3,y[1]+.3],crs= crs_new)
         # title
         axs.set_title(var+title_2)
         #add colorbar and label
         cbar=plt.colorbar(cs,boundaries=levels,shrink = 0.5)
         cbar.set_ticks(levels)
         # add state lines
         states_provinces = cfeature.NaturalEarthFeature(category='cultural',name='admin_1_states_provinces_lines',scale='50m',facecolor='none')
         #
         land = cfeature.NaturalEarthFeature('physical', 'lakes', '10m',
                                        edgecolor='black',
                                        facecolor='none')
         axs.add_feature(land, edgecolor='black')
         axs.add_feature(states_provinces, edgecolor='black')
         #add epa monitors if its CMAQ
         if add_epa == True:
            if i < len(cmaq_var):
               try: axs.scatter(epa_avgs_latlon[i]['Longitude'],epa_avgs_latlon[i]['Latitude'],c=epa_avgs_latlon[i]['Arithmetic Mean'],vmin = vmin, vmax= vmax,s=75, cmap = cmap,edgecolors = 'black')
               except: pass
         #savefig
         plt.savefig(var+version+'v7.png',transparent=True)
         if show == True: plt.show()
Ejemplo n.º 25
0
def add_shapefile(ax,
                  shapefile,
                  projection=ccrs.PlateCarree(),
                  facecolor='none',
                  edgecolor='black'):
    shape_feature = ShapelyFeature(Reader(shapefile).geometries(), projection)
    ax.add_feature(shape_feature, facecolor=facecolor, edgecolor=edgecolor)
    return ax
Ejemplo n.º 26
0
def plot_polygons(regions, file_extension='png'):
    """
    extract the polygon coordinate and plot it on a worldmap

    :param regions: list of ISO abreviations for polygons

    :return png: map_graphic.png
    """

    from cartopy.io.shapereader import Reader
    from cartopy.feature import ShapelyFeature
    from numpy import mean, append

    from blackswan import config
    DIR_SHP = config.shapefiles_path()

    if type(regions) == str:
        regions = list([regions])

    fname = join(DIR_SHP, "countries.shp")
    geos = Reader(fname).geometries()
    records = Reader(fname).records()
    central_latitude = []
    central_longitude = []

    for r in records:
        geo = geos.next()
        if r.attributes['ISO_A3'] in regions:
            x, y = geo.centroid.coords.xy
            central_longitude.append(x[0])
            central_latitude.append(y[0])

    fig = plt.figure(figsize=(20, 10))
    projection = ccrs.Orthographic(central_longitude=mean(central_longitude),
                                   central_latitude=mean(central_latitude),
                                   globe=None)  # Robinson()
    ax = plt.axes(projection=projection)

    geos = Reader(fname).geometries()
    records = Reader(fname).records()

    for r in records:
        geo = geos.next()
        if r.attributes['ISO_A3'] in regions:
            shape_feature = ShapelyFeature(geo, ccrs.PlateCarree(), edgecolor='black', color='coral')
            ax.add_feature(shape_feature)
    ax.coastlines()
    ax.gridlines()
    ax.stock_img()
    # ax.set_global()
    map_graphic = fig2plot(fig=fig, file_extension=file_extension)
    plt.close()

    return map_graphic
Ejemplo n.º 27
0
def main():

    # Iniciando a projeção e suas dimensões lat/lon
    ax = plt.axes(projection=ccrs.PlateCarree())
    # coords = (-54, -47, -25.8, -29.4)
    coords = (-50, -48, -26, -29.4)
    ax.set_extent(coords)
    # ax.set_yticks((-25.8, -27.0, -28.2, -29.4))
    ax.gridlines(draw_labels=True)

    # Shapefiles que vão gerar os limites territoriais.
    brasil = 'analysis/cartopy/shapefiles/Brasil-POLYGON.shp'
    sc = 'analysis/cartopy/shapefiles/SC-POLYGON.shp'
    laguna = 'analysis/cartopy/shapefiles/DestaqueLaguna-POLYGON.shp'
    lagoas = 'analysis/cartopy/shapefiles/LagoasComplexoLagunar-POLYGON.shp'

    # Vamos fazer uma lista para iterar um loop com a função add_geometries()
    shapes = [brasil, sc, laguna, lagoas]

    ax.stock_img()

    # for loop para adicionar os shapes à figura
    for item in shapes:
        if item is lagoas:
            ax.add_geometries(Reader(item).geometries(),
                              ccrs.PlateCarree(),
                              facecolor='skyblue',
                              edgecolor='black')
        else:
            ax.add_geometries(Reader(item).geometries(),
                              ccrs.PlateCarree(),
                              facecolor='beige',
                              edgecolor='black')

    # p = patches.Rectangle(
    # 	(-48.9, -28.55), 0.2, 0.15,
    # 	fill = False, color = 'red',
    # 	zorder = 6, lw = 3.0, ls = '-'
    # 	)

    # ax.add_patch(p)

    plt.show()
Ejemplo n.º 28
0
 def plot_continental_polygons(self,
                               ax,
                               facecolor=None,
                               edgecolor='none',
                               alpha=0.1):
     print('Plotting continental polygons...')
     shape_feature = ShapelyFeature(
         Reader(continental_polygons_output_basename).geometries(),
         ccrs.PlateCarree(),
         edgecolor=edgecolor)
     ax.add_feature(shape_feature, facecolor=facecolor, alpha=alpha)
Ejemplo n.º 29
0
def create_map(fig):
    shp_path = r'/mnt/e/公众号/可视化/cartopy/China_shp_lqy/'
    # --创建画图空间
    proj = ccrs.LambertConformal(central_longitude=110,
                                 central_latitude=35,
                                 standard_parallels=(30, 60))  # 创建坐标系

    ax = fig.subplots(1, 1, subplot_kw={'projection': proj})
    # --设置shp
    provinces = cfeat.ShapelyFeature(
        Reader(shp_path + 'province.shp').geometries(),
        ccrs.PlateCarree(),
        edgecolor='k',
        facecolor='none',
    )
    ax.add_feature(provinces, linewidth=0.6, zorder=2)
    # --设置范围
    ax.set_extent([80, 135, 15, 55], crs=ccrs.PlateCarree())
    # --关闭边框
    ax.spines['geo'].set_visible(False)
    # --设置刻度
    ax.tick_params(axis='both',
                   labelsize=5,
                   direction='out',
                   labelbottom=False,
                   labeltop=False,
                   labelleft=False,
                   labelright=False)
    # --设置小地图
    left, bottom, width, height = 0.675, 0.13, 0.23, 0.27
    ax2 = fig.add_axes([left, bottom, width, height],
                       projection=ccrs.PlateCarree())
    provinces = cfeat.ShapelyFeature(
        Reader(shp_path + 'province.shp').geometries(),
        ccrs.PlateCarree(),
        edgecolor='k',
        facecolor='gray',
    )
    ax2.add_feature(provinces, linewidth=0.6, zorder=2)
    ax2.set_extent([105, 125, 0, 25], crs=ccrs.PlateCarree())
    return ax
Ejemplo n.º 30
0
def add_country(geoms, name):
    shape_records = Reader(
        natural_earth(resolution='110m',
                      category='cultural',
                      name='admin_0_countries')).records()
    for country in shape_records:
        if country.attributes['NAME_LONG'] in name:
            try:
                geoms += country.geometry
            except TypeError:
                geoms.append(country.geometry)
    return geoms
Ejemplo n.º 31
0
def get_country_geom(name_list):
    country_shapes = Reader(
        natural_earth(resolution='10m',
                      category='cultural',
                      name='admin_0_countries')).records()
    geoms = []
    for name in name_list:
        for shape_temp in country_shapes:
            if name == shape_temp.attributes['NAME_EN']:
                print('Selecting: {}'.format(name))
                geoms.append(shape_temp.geometry)
    return geoms
					new_d14c_cube.data = d14c_data_for_cube
					new_dpco2_cube.data = dpco2_data_for_cube
					new_d14c_cube.coord('time').points = (d14c_cube.coord('time').points-11)/100
					new_dpco2_cube.coord('time').points = (d14c_cube.coord('time').points-11)/100
					new_d14c_cube.long_name = d14c_cube.long_name
					new_dpco2_cube.long_name = dpco2_cube.long_name
					new_d14c_cube.standard_name = d14c_cube.standard_name
					new_dpco2_cube.standard_name = dpco2_cube.standard_name
					new_d14c_cube.units = d14c_cube.units
					new_dpco2_cube.units = dpco2_cube.units
					new_d14c_cube.var_name = d14c_cube.var_name
					new_dpco2_cube.var_name = dpco2_cube.var_name

					shpfilename = natural_earth(resolution='110m', category='physical', name='land')
					reader = Reader(shpfilename)
					continents = reader.records()

					new_d14c_cube.coord('latitude').guess_bounds()
					new_d14c_cube.coord('longitude').guess_bounds()
					new_dpco2_cube.coord('latitude').guess_bounds()
					new_dpco2_cube.coord('longitude').guess_bounds()

					continent_geometries = reader.geometries()  # NB. Switched from using records()
					all_continents_geometry = cascaded_union(list(continent_geometries))
					area_weights = geometry_area_weights(new_d14c_cube, all_continents_geometry)
					land_mask = np.where(area_weights > 0, True, False)
					new_d14c_cube.data = np.ma.array(new_d14c_cube.data, mask=land_mask)
					area_weights = geometry_area_weights(new_dpco2_cube, all_continents_geometry)
					land_mask = np.where(area_weights > 0, True, False)
					new_dpco2_cube.data = np.ma.array(new_dpco2_cube.data, mask=land_mask)
from cartopy.feature import ShapelyFeature
import cartopy.feature as cfeature
import os

plt.clf()

#ax = geo_plots.add_map(bbox=(-89,-85,27.5,31))
ax = geo_plots.add_map(bbox=(-90, -84, 27.5, 31))
#land_10m = cfeature.NaturalEarthFeature('physical','land','50m',\
#    edgecolor='face',facecolor='0.75')
##ax.add_feature(cfeature.LAND, facecolor='0.75')
#ax.add_feature(land_10m)
#if bbox not specified, this will use map bounds from bna

bathy_file = os.path.join('gom_bathy','Bathymetry.shp')
bathy = Reader(bathy_file)

for rec,geo in zip(bathy.records(),bathy.geometries()):
    if rec.attributes['DEPTH_METR'] in ['100m','500m','1000m']:
        shape_feature = ShapelyFeature(geo,ccrs.PlateCarree(), facecolor='none')
        ax.add_feature(shape_feature)

#add particles at one time
t = datetime.datetime(2016, 9, 21, 1)

filename = 'gulf_tamoc.nc'
ax = geo_plots.contour_particles(ax,filename,t,levels=[0.1, 0.4, 0.6, 1])
#ax = geo_plots.plot_particles(ax,filename,t,depth=0,color='b')


#add initial location