Ejemplo n.º 1
0
    def __init__(self, ocpVars, lbw, ubw, ocpParams, ocpCosts, ocpConstr, NX, NU, M, w0, Q, R, solvOpts={}):
        self.var = ocpVars
        self.lbw = lbw
        self.ubw = ubw
        self.params = ocpParams
        self.costs = sum(ocpCosts)
        self.g = ca.vertcat(*[c[0] for c in ocpConstr])
        self.lbg = ca.vertcat(*[c[1] for c in ocpConstr])
        self.ubg = ca.vertcat(*[c[2] for c in ocpConstr])
        self.w0 = w0
        self.lagrMulConstr = np.zeros((self.g.numel(),))
        self.lagrMulOptVars = np.zeros((self.var.cat.numel(),))

        self.NX = NX
        self.NU = NU
        self.M = M

        # symbolic variables
        w = ca.vertcat(self.var['x'][:], self.var['u']
                       [:])  # primal decision variables
        # constraint lagrange multipliers (lambda + mu, i.e. dual decision variables)
        lagrMult = ca.SX.sym('lagrMult', self.g.size())
        wGuess = ca.SX.sym('wGuess', w.shape)  # guess / linearization point

        # single weight matrix for all decision variables
        W = np.diag(np.concatenate([np.tile(Q, M+1), np.tile(R, M)]))

        L = self.costs + lagrMult.T @ self.g
        B = ca.Function('B', [w], [ca.hessian(L,w)[0]])(wGuess)

        wErr = w - wGuess
        # reference as QP parameters
        wRef = ca.vertcat(self.params['x_ref'][:], self.params['u_ref'][:])

        #B = W  # gauss-newton hessian approximation
        J = W @ (wGuess - wRef)

        fqp = 1./2. * wErr.T @ B @ wErr + J.T @ wErr
        gqp = linearize(self.g, w, wGuess)
        pqp = ca.vertcat(self.params.cat, wGuess, lagrMult)

        # assemble QP
        if not solvOpts:
            solvOpts = {'jit': False, 'print_time': 0, 'printLevel': 'low',
                        'sparse': True, 'enableEqualities': True}
            #solvOpts = {'jit' : True, 'print_time' : 0, 'printLevel' : 'high', 'sparse' : True}

        qp = {'x': self.var, 'f': fqp, 'g': gqp, 'p': pqp}
        self.solver = ca.qpsol('S', 'qpoases', qp, solvOpts)

        self.solverResults = []
        self.durations = []
#        #"hessian_constant" : "yes"
#    },
#    "print_time" : False,
#    "ipopt.print_level" : 0,
#    "ipopt.max_cpu_time" : 60,
#    #"ipopt.jac_c_constant" : "yes",
#    #"ipopt.jac_d_constant" : "yes",
#    #"ipopt.hessian_constant" : "yes",
#    "ipopt.linear_solver" : "ma27",
#}
#solver = casadi.nlpsol("solver",
#    "ipopt", nlp, nlpoptions)

qpoptions = {"printLevel": 'none', "print_time": False, 'sparse': True}
qp = {'x': var, 'f': obj, 'g': con, 'p': par}
solver = casadi.qpsol('solver', 'qpoases', qp, qpoptions)

#<<ENDCHUNK>>

varguess["x", 0, :] = x0
for i in range(1, Nt + 1):
    vdpargs = dict(x0=np.array(varguess["x", i - 1, :]).flatten(), p=u0)
    out = vdp(**vdpargs)
    varguess["x", i, :] = np.array(out["xf"]).flatten()

# Now simulate.
Nsim = 100
times = Delta * Nsim * np.linspace(0, 1, Nsim + 1)
x = np.zeros((Nsim + 1, Nx))
x[0, :] = x0
u = np.zeros((Nsim, Nu))
Ejemplo n.º 3
0
def calculate_network(
        nodes: pd.DataFrame,
        pipes: pd.DataFrame,
        penalty_order: float = 1.0,
        head_loss_option: HeadLossOption = HeadLossOption.Q_ONLY):

    if head_loss_option not in HeadLossOption.__members__.values():
        raise Exception(
            f"Head loss option '{head_loss_option}' does not exist")

    pipes.set_index('pipe_id', inplace=True)
    nodes.set_index('node_id', inplace=True)

    nodes_df = nodes
    pipes_df = pipes

    # Convert to dict of Node/Pipe instances
    nodes = {}

    for k, v in nodes_df.to_dict('index').items():
        nodes[k] = Node(k, **v)

    pipes = {}

    for k, v in pipes_df.to_dict('index').items():
        pipes[k] = Pipe(k, **v)

    # Convention is that positive is into a branch and negative is out of a
    # branch. For nodes, that means that their demand has to be signed
    # accordingly (as if a branch was attached)
    equations = []

    node_balance = {n: 0 for n in nodes}

    for p in pipes.values():
        equations.append((p.q_start + p.q_end, 0.0, 0.0))

        # Continuity equations
        nodes[p.start].q_balance.append(p.q_start)
        nodes[p.end].q_balance.append(p.q_end)

        if head_loss_option >= HeadLossOption.LINEAR:
            # Head at node equal to head at pipe
            equations.append((nodes[p.start].head - p.h_start, 0.0, 0.0))
            equations.append((nodes[p.end].head - p.h_end, 0.0, 0.0))

            # Head loss definition is h_start - h_end. In other words, a positive
            # discharge means a positive head _loss_
            # If a pipe has a booster, the booster is located at the start. The head
            # loss is then the difference between the downstream head of the booster,
            # and the end of the pipe.
            # TODO: We do not actually need the head loss symbol.
            equations.append(
                (p.head_loss - (p.h_start + p.booster_head - p.h_end), 0.0,
                 0.0))
            if p.has_booster:
                equations.extend(p.pump_qh_constraints)

            if head_loss_option == HeadLossOption.LINEAR:
                a = _get_head_loss_coeff_linear(p.length, p.diameter / 1000)
                equations.append((p.head_loss - a * p.q_start, 0.0, 0.0))

            elif head_loss_option == HeadLossOption.NONLINEAR:
                # Flow direction is positive --> flow_dir_sym is 1
                # Flow direction is negative --> flow_dir_sym is 0
                max_discharge = p.max_velocity * p.area
                head_loss_coeffs = list(
                    zip(*_get_head_loss_coeffs(p.length, p.diameter / 1000)))
                max_head_loss = head_loss_coeffs[-1][
                    0] * p.max_velocity + head_loss_coeffs[-1][1]

                equations.append(
                    (p.q_start - p.flow_dir_sym * max_discharge, -np.inf, 0.0))
                equations.append(
                    (p.q_start + (1 - p.flow_dir_sym) * max_discharge, 0.0,
                     np.inf))

                for a, b in head_loss_coeffs:
                    equations.append(
                        (p.head_loss - (a * p.q_start + b) +
                         (1 - p.flow_dir_sym) * max_head_loss, 0.0, np.inf))
                    equations.append(
                        (-p.head_loss - (a * -p.q_start + b) +
                         p.flow_dir_sym * max_head_loss, 0.0, np.inf))

    # Whether to use a quadratic drop-off, or a linear apprixation thereof for the Node discharge
    node_quadratic = None
    if head_loss_option <= HeadLossOption.LINEAR:
        if penalty_order == 1.0:
            node_quadratic = False
        else:
            node_quadratic = True
    else:
        node_quadratic = False

    for n in nodes.values():
        equations.append((sum(n.q_balance), 0.0, 0.0))

        if head_loss_option > HeadLossOption.Q_ONLY:
            if n.type == 'demand':
                if node_quadratic:
                    equations.extend(n.qh_constraints_quadratic)
                else:
                    equations.extend(n.qh_constraints_linear)
            elif n.type == 'supply' and n.use_pump_curve:
                equations.extend(n.pump_qh_constraints)

    # Build the state vector with the appropriate bounds
    x = []
    lbx = []
    ubx = []
    discrete = []

    for n in nodes.values():
        if n.q_control is not None:
            x.append(n.q_control)
            lb, ub = n.q_bounds
            lbx.append(lb)
            ubx.append(ub)
            discrete.append(False)

    if head_loss_option >= HeadLossOption.LINEAR:
        for n in nodes.values():
            if n.head is not None:
                x.append(n.head)
                lb, ub = n.h_bounds
                lbx.append(lb)
                ubx.append(ub)
                discrete.append(False)

    for p in pipes.values():
        x.append(p.q_start)
        lb, ub = p.q_bounds
        lbx.append(lb)
        ubx.append(ub)
        discrete.append(False)

        x.append(p.q_end)
        lbx.append(lb)
        ubx.append(ub)
        discrete.append(False)

        if head_loss_option >= HeadLossOption.LINEAR:
            x.append(p.h_start)
            lbx.append(0.0)
            ubx.append(np.inf)
            discrete.append(False)

            x.append(p.h_end)
            lbx.append(0.0)
            ubx.append(np.inf)
            discrete.append(False)

            x.append(p.head_loss)
            lbx.append(-np.inf)
            ubx.append(np.inf)
            discrete.append(False)

            if p.has_booster:
                x.append(p.booster_head)
                lbx.append(-np.inf)
                ubx.append(np.inf)
                discrete.append(False)

        if head_loss_option == HeadLossOption.NONLINEAR:
            x.append(p.flow_dir_sym)
            lbx.append(0.0)
            ubx.append(1.0)
            discrete.append(True)

    # Build the indices for easy lookup
    index_to_name = {i: v.name() for i, v in enumerate(x)}

    # Build the constraints
    g, lbg, ubg = zip(*equations)

    # Build the objective
    f = 0.0
    for n in nodes.values():
        f += n.objective**penalty_order

    # Construct the qp, and solve
    qp = {'f': f, 'g': ca.vertcat(*g), 'x': ca.vertcat(*x)}

    cbc_options = {'cbc': {'slog': 0, 'log': 0}}
    ipopt_options = {
        'print_time': 0,
        'ipopt': {
            'print_level': 0,
            'sb': 'yes',
        }
    }

    if head_loss_option <= HeadLossOption.LINEAR:
        if penalty_order == 1.0:
            # We use cbc instead of clp, because we can make it shut up (and
            # Clp cannot really be)
            solver = ca.qpsol('qp', 'cbc', qp, {
                "discrete": discrete,
                **cbc_options
            })
        else:
            # 'sb' = 'yes' disable the license header. Very much an obscure
            # 'and undocumented option.
            solver = ca.nlpsol('qp', 'ipopt', qp, {
                "discrete": discrete,
                **ipopt_options
            })
    else:
        if penalty_order != 1.0:
            raise Exception(
                "Mixed-integer solving requires penalty order of 1.0 (for now)"
            )
        solver = ca.qpsol('qp', 'cbc', qp, {
            "discrete": discrete,
            **cbc_options
        })

    ret = solver(lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)
    x_solved = np.array(ret['x']).ravel()
    results = {index_to_name[i]: x_solved[i] for i in range(len(x_solved))}

    discharge_dict = {}
    flow_dict = {}
    total_shortage = 0.0
    max_shortage = 0.0

    for n in nodes.values():
        if n.q_control is not None:
            q = results[n.q_control.name()]
            if n.type == 'supply':
                q = -q
            else:
                total_shortage += n.discharge - results[n.q_control.name()]
            discharge_dict[n.id] = q
        else:
            discharge_dict[n.id] = 0.0

    for p in pipes.values():
        flow_dict[p.id] = results[p.q_start.name()]

    return total_shortage, discharge_dict, flow_dict
Ejemplo n.º 4
0
# g_l       = ...;

# YOUR CODE HERE: define the linearized inequalities
# Jtemp     = Jh({xk});
# g_temp    = H({xk});
# h_l       = ...;

# YOUR CODE HERE: Gauss-Newton Hessian approximation (Task 5.3)
# j_out     = Jr({xk});
# jf_out    = Jf({xk});
# r_out     = R({xk});
# f_gn      = ...;

# Allocate QP solver
qp = {'x': x, 'f': f_gn, 'p': xk}
solver = C.qpsol('solver', 'qpoases', qp)

#qp = {'x':x, 'f':f_gn,'g':g_l,'p':xk}
#solver = C.qpsol('solver', 'qpoases', qp)

#qp = {'x':x, 'f':f_gn,'g':C.vertcat([g_l,h_l]),'p':xk}
#solver = C.qpsol('solver', 'qpoases', qp)

# SQP solver
max_it = 100
xk = np.array([1, 1])  # Initial guess

iters = [xk]
for i in range(1, max_it):

    # YOUR CODE HERE: formulate the QP (Tasks 5.3, 5.4, 5.5)
Ejemplo n.º 5
0
    def mpcontrol(self, b_orient, rz_phi, x_in, x_ref, c_l, c_r, pf_l, pf_r):

        # vector from CoM to hip in global frame (should just use body frame?)
        rh_l_g = np.dot(b_orient,
                        self.rh_l)  # TODO: should this still be rz_phi?
        rh_r_g = np.dot(b_orient, self.rh_r)
        # rh_l_g = np.dot(rz_phi, self.rh_l)
        # rh_r_g = np.dot(rz_phi, self.rh_r)

        # actual initial footstep position vector from CoM to end effector
        r1 = pf_l + rh_l_g
        r2 = pf_r + rh_r_g

        # inertia matrix inverse
        # i_global = np.dot(np.dot(rz_phi, self.inertia), rz_phi.T)
        i_global = np.dot(np.dot(b_orient, self.inertia),
                          b_orient.T)  # TODO: should this still be rz_phi?
        i_inv = np.linalg.inv(i_global)

        i11 = i_inv[0, 0]
        i12 = i_inv[0, 1]
        i13 = i_inv[0, 2]
        i21 = i_inv[1, 0]
        i22 = i_inv[1, 1]
        i23 = i_inv[1, 2]
        i31 = i_inv[2, 0]
        i32 = i_inv[2, 1]
        i33 = i_inv[2, 2]

        rz11 = rz_phi[0, 0]
        rz12 = rz_phi[0, 1]
        rz13 = rz_phi[0, 2]
        rz21 = rz_phi[1, 0]
        rz22 = rz_phi[1, 1]
        rz23 = rz_phi[1, 2]
        rz31 = rz_phi[2, 0]
        rz32 = rz_phi[2, 1]
        rz33 = rz_phi[2, 2]

        # r = foot position
        r1x = r1[0]
        r1y = r1[1]
        r1z = r1[2]
        r2x = r2[0]
        r2y = r2[1]
        r2z = r2[2]

        theta_x = cs.SX.sym('theta_x')
        theta_y = cs.SX.sym('theta_y')
        theta_z = cs.SX.sym('theta_z')
        p_x = cs.SX.sym('p_x')
        p_y = cs.SX.sym('p_y')
        p_z = cs.SX.sym('p_z')
        omega_x = cs.SX.sym('omega_x')
        omega_y = cs.SX.sym('omega_y')
        omega_z = cs.SX.sym('omega_z')
        pdot_x = cs.SX.sym('pdot_x')
        pdot_y = cs.SX.sym('pdot_y')
        pdot_z = cs.SX.sym('pdot_z')
        states = [
            theta_x, theta_y, theta_z, p_x, p_y, p_z, omega_x, omega_y,
            omega_z, pdot_x, pdot_y, pdot_z
        ]  # state vector x
        n_states = len(states)  # number of states

        f1_x = cs.SX.sym('f1_x')  # controls
        f1_y = cs.SX.sym('f1_y')  # controls
        f1_z = cs.SX.sym('f1_z')  # controls
        f2_x = cs.SX.sym('f2_x')  # controls
        f2_y = cs.SX.sym('f2_y')  # controls
        f2_z = cs.SX.sym('f2_z')  # controls
        controls = [f1_x, f1_y, f1_z, f2_x, f2_y, f2_z]
        n_controls = len(controls)  # number of controls

        gravity = -9.807
        dt = self.dt
        mass = self.mass
        # gravity = cs.SX.sym("gravity")
        # dt = cs.SX.sym("dt")
        # mass = cs.SX.sym("mass")
        # x_next = np.dot(A, states) + np.dot(B, controls) + g  # the discrete dynamics of the system
        x_next = [
            dt * omega_x * rz11 + dt * omega_y * rz12 + dt * omega_z * rz13 +
            theta_x, dt * omega_x * rz21 + dt * omega_y * rz22 +
            dt * omega_z * rz23 + theta_y, dt * omega_x * rz31 +
            dt * omega_y * rz32 + dt * omega_z * rz33 + theta_z,
            dt * pdot_x + p_x, dt * pdot_y + p_y, dt * pdot_z + p_z,
            dt * f1_x * (i12 * r1z - i13 * r1y) + dt * f1_y *
            (-i11 * r1z + i13 * r1x) + dt * f1_z * (i11 * r1y - i12 * r1x) +
            dt * f2_x * (i12 * r2z - i13 * r2y) + dt * f2_y *
            (-i11 * r2z + i13 * r2x) + dt * f2_z * (i11 * r2y - i12 * r2x) +
            omega_x, dt * f1_x * (i22 * r1z - i23 * r1y) + dt * f1_y *
            (-i21 * r1z + i23 * r1x) + dt * f1_z * (i21 * r1y - i22 * r1x) +
            dt * f2_x * (i22 * r2z - i23 * r2y) + dt * f2_y *
            (-i21 * r2z + i23 * r2x) + dt * f2_z * (i21 * r2y - i22 * r2x) +
            omega_y, dt * f1_x * (i32 * r1z - i33 * r1y) + dt * f1_y *
            (-i31 * r1z + i33 * r1x) + dt * f1_z * (i31 * r1y - i32 * r1x) +
            dt * f2_x * (i32 * r2z - i33 * r2y) + dt * f2_y *
            (-i31 * r2z + i33 * r2x) + dt * f2_z * (i31 * r2y - i32 * r2x) +
            omega_z, dt * f1_x / mass + dt * f2_x / mass + pdot_x,
            dt * f1_y / mass + dt * f2_y / mass + pdot_y,
            dt * f1_z / mass + dt * f2_z / mass + gravity + pdot_z
        ]

        self.fn = cs.Function('fn', [
            theta_x, theta_y, theta_z, p_x, p_y, p_z, omega_x, omega_y,
            omega_z, pdot_x, pdot_y, pdot_z, f1_x, f1_y, f1_z, f2_x, f2_y, f2_z
        ], x_next)  # nonlinear mapping of function f(x,u)

        u = cs.SX.sym('u', n_controls,
                      self.N)  # decision variables, control action matrix
        st_ref = cs.SX.sym('st_ref',
                           n_states + n_states)  # initial and reference states
        x = cs.SX.sym(
            'x', n_states,
            (self.N + 1))  # represents the states over the opt problem.

        obj = 0  # objective function
        constr = []  # constraints vector
        k = 10
        Q = np.zeros((12, 12))  # state weighing matrix
        Q[0, 0] = k
        Q[1, 1] = k
        Q[2, 2] = k
        Q[3, 3] = k
        Q[4, 4] = k
        Q[5, 5] = k
        Q[6, 6] = k
        Q[7, 7] = k
        Q[8, 8] = k
        Q[9, 9] = k
        Q[10, 10] = k
        Q[11, 11] = k

        R = np.zeros((6, 6))  # control weighing matrix
        R[0, 0] = k / 2
        R[1, 1] = k / 2
        R[2, 2] = k / 2
        R[3, 3] = k / 2
        R[4, 4] = k / 2
        R[5, 5] = k / 2

        constr = cs.vertcat(
            constr,
            x[:, 0] - st_ref[0:n_states])  # initial condition constraints
        # compute objective and constraints
        for k in range(0, self.N):
            st = x[:, k]  # state
            con = u[:, k]  # control action
            # calculate objective
            # why not just plug x_in and x_ref directly into st_ref??
            obj = obj + cs.mtimes(cs.mtimes((st - st_ref[n_states:(n_states * 2)]).T, Q),
                                  st - st_ref[n_states:(n_states * 2)]) \
                + cs.mtimes(cs.mtimes(con.T, R), con)
            st_next = x[:, k + 1]
            f_value = self.fn(st[0], st[1], st[2], st[3], st[4], st[5], st[6],
                              st[7], st[8], st[9], st[10], st[11], con[0],
                              con[1], con[2], con[3], con[4], con[5])
            st_n_e = np.array(f_value)
            constr = cs.vertcat(constr,
                                st_next - st_n_e)  # compute constraints

        # add additional constraints
        for k in range(0, self.N):
            constr = cs.vertcat(constr,
                                u[0, k] - self.mu * u[2, k])  # f1x - mu*f1z
            constr = cs.vertcat(constr,
                                -u[0, k] - self.mu * u[2, k])  # -f1x - mu*f1z

            constr = cs.vertcat(constr,
                                u[1, k] - self.mu * u[2, k])  # f1y - mu*f1z
            constr = cs.vertcat(constr,
                                -u[1, k] - self.mu * u[2, k])  # -f1y - mu*f1z

            constr = cs.vertcat(constr,
                                u[3, k] - self.mu * u[5, k])  # f2x - mu*f2z
            constr = cs.vertcat(constr,
                                -u[3, k] - self.mu * u[5, k])  # -f2x - mu*f2z

            constr = cs.vertcat(constr,
                                u[4, k] - self.mu * u[5, k])  # f2y - mu*f2z
            constr = cs.vertcat(constr,
                                -u[4, k] - self.mu * u[5, k])  # -f2y - mu*f2z

        opt_variables = cs.vertcat(cs.reshape(x, n_states * (self.N + 1), 1),
                                   cs.reshape(u, n_controls * self.N, 1))
        qp = {'x': opt_variables, 'f': obj, 'g': constr, 'p': st_ref}
        opts = {
            'print_time': 0,
            'error_on_fail': 0,
            'printLevel': "none",
            'boundTolerance': 1e-6,
            'terminationTolerance': 1e-6
        }
        solver = cs.qpsol('S', 'qpoases', qp, opts)

        c_length = np.shape(constr)[0]
        o_length = np.shape(opt_variables)[0]

        lbg = list(itertools.repeat(-1e10, c_length)
                   )  # inequality constraints: big enough to act like infinity
        lbg[0:(self.N + 1)] = itertools.repeat(
            0, self.N + 1)  # IC + dynamics equality constraint
        ubg = list(itertools.repeat(0, c_length))  # inequality constraints

        # constraints for optimization variables
        lbx = list(itertools.repeat(-1e10,
                                    o_length))  # input inequality constraints
        ubx = list(itertools.repeat(1e10,
                                    o_length))  # input inequality constraints

        st_len = n_states * (self.N + 1)

        lbx[(st_len + 2)::3] = [0 for i in range(20)
                                ]  # lower bound on all f1z and f2z

        if c_l == 0:  # if left leg is not in contact... don't calculate output forces for that leg.
            ubx[(n_states * (self.N + 1))::6] = [0 for i in range(10)
                                                 ]  # upper bound on all f1x
            ubx[(n_states * (self.N + 1) +
                 1)::6] = [0 for i in range(10)]  # upper bound on all f1y
            lbx[(n_states * (self.N + 1))::6] = [0 for i in range(10)
                                                 ]  # lower bound on all f1x
            lbx[(n_states * (self.N + 1) +
                 1)::6] = [0 for i in range(10)]  # lower bound on all f1y
            ubx[(n_states * (self.N + 1) +
                 2)::6] = [0 for i in range(10)]  # upper bound on all f1z
        else:
            ubx[(n_states * (self.N + 1))::6] = [1 for i in range(10)
                                                 ]  # upper bound on all f1x
            ubx[(n_states * (self.N + 1) +
                 1)::6] = [1 for i in range(10)]  # upper bound on all f1y
            lbx[(n_states * (self.N + 1))::6] = [-1 for i in range(10)
                                                 ]  # lower bound on all f1x
            lbx[(n_states * (self.N + 1) +
                 1)::6] = [-1 for i in range(10)]  # lower bound on all f1y
            ubx[(n_states * (self.N + 1) +
                 2)::6] = [2.5 for i in range(10)]  # upper bound on all f1z

        if c_r == 0:  # if right leg is not in contact... don't calculate output forces for that leg.
            ubx[(n_states * (self.N + 1) +
                 3)::6] = [0 for i in range(10)]  # upper bound on all f2x
            ubx[(n_states * (self.N + 1) +
                 4)::6] = [0 for i in range(10)]  # upper bound on all f2y
            lbx[(n_states * (self.N + 1) +
                 3)::6] = [0 for i in range(10)]  # lower bound on all f2x
            lbx[(n_states * (self.N + 1) +
                 4)::6] = [0 for i in range(10)]  # lower bound on all f2y
            ubx[(n_states * (self.N + 1) +
                 5)::6] = [0 for i in range(10)]  # upper bound on all f2z
        else:
            ubx[(n_states * (self.N + 1) +
                 3)::6] = [1 for i in range(10)]  # upper bound on all f2x
            ubx[(n_states * (self.N + 1) +
                 4)::6] = [1 for i in range(10)]  # upper bound on all f2y
            lbx[(n_states * (self.N + 1) +
                 3)::6] = [-1 for i in range(10)]  # lower bound on all f2x
            lbx[(n_states * (self.N + 1) +
                 4)::6] = [-1 for i in range(10)]  # lower bound on all f2y
            ubx[(n_states * (self.N + 1) +
                 5)::6] = [2.5 for i in range(10)]  # upper bound on all f2z
        # setup is finished, now solve-------------------------------------------------------------------------------- #

        u0 = np.zeros((self.N, n_controls))  # six control inputs
        X0 = np.matlib.repmat(
            x_in, 1,
            self.N + 1).T  # initialization of the state's decision variables

        # parameters and xin must be changed every timestep
        parameters = cs.vertcat(x_in, x_ref)  # set values of parameters vector
        # init value of optimization variables
        x0 = cs.vertcat(np.reshape(X0.T, (n_states * (self.N + 1), 1)),
                        np.reshape(u0.T, (n_controls * self.N, 1)))

        sol = solver(x0=x0, lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg, p=parameters)

        solu = np.array(sol['x'][n_states * (self.N + 1):])
        # u = np.reshape(solu.T, (n_controls, self.N)).T  # get controls from the solution
        u = np.reshape(
            solu.T, (self.N, n_controls)).T  # get controls from the solution

        # u_cl = u[0, :]  # ignore rows other than new first row
        u_cl = u[:, 0]  # ignore rows other than new first row
        # ss_error = np.linalg.norm(x0 - x_ref)  # defaults to Euclidean norm
        # print("ss_error = ", ss_error)
        # print(u_cl)
        # print("Time elapsed for MPC: ", t1 - t0)

        return u_cl
Ejemplo n.º 6
0
# Build the constraints
g = equations
lbg = [0.0] * len(g)
ubg = lbg.copy()

# Build the objective
f = 0.0
for n in nodes.values():
    f += n.objective**2

# In[104]:

# Construct the qp, and solver
qp = {'f': f, 'g': ca.vertcat(*g), 'x': ca.vertcat(*x)}

solver = ca.qpsol('qp', 'cplex', qp, {})

# In[105]:

results = solver(lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)

# In[112]:

total_shortage = 0
max_shortage = 0

i = 0
for n in nodes.values():
    if n.q_control is not None:
        print("Node", n.id, n.type, n.demand, results['x'][i])
Ejemplo n.º 7
0
def calculate_network(
        nodes: Union[str, pd.DataFrame, Dict[str, List]] = 'nodes.csv',
        pipes: Union[str, pd.DataFrame, Dict[str, List]] = 'pipes.csv',
        penalty_order: float = 1.0,
        head_loss_option: HeadLossOption = HeadLossOption.Q_ONLY):

    nodes_df = nodes
    pipes_df = pipes

    #Convert to dict of Node/Pipe instances
    nodes = {}

    for k, v in nodes_df.to_dict('index').items():
        nodes[k] = Node(k, **v)

    pipes = {}

    for k, v in pipes_df.to_dict('index').items():
        pipes[k] = Pipe(k, **v)

    # Convention is that positive is into a branch and negative is out of a
    # branch. For nodes, that means that their demand has to be signed
    # accordingly (as if a branch was attached)
    equations = []

    node_balance = {n: 0 for n in nodes}

    for p in pipes.values():
        equations.append((p.q_start + p.q_end, 0.0, 0.0))

        # Continuity equations
        nodes[p.start].q_balance.append(p.q_start)
        nodes[p.end].q_balance.append(p.q_end)

        if head_loss_option >= HeadLossOption.LINEAR:
            # Head at node equal to head at pipe
            equations.append((nodes[p.start].head - p.h_start, 0.0, 0.0))
            equations.append((nodes[p.end].head - p.h_end, 0.0, 0.0))

            # Head loss definition is h_start - h_end. In other words, a positive
            # discharge means a positive head _loss_
            # TODO: We do not actually need the head loss symbol.
            equations.append((p.head_loss - (p.h_start - p.h_end), 0.0, 0.0))

            if head_loss_option == HeadLossOption.LINEAR:
                a = _get_head_loss_coeff_linear(p.length, p.diameter / 1000)
                equations.append((p.head_loss - a * p.q_start, 0.0, 0.0))

            elif head_loss_option == HeadLossOption.NONLINEAR:
                # Flow direction is positive --> flow_dir is 1
                # Flow direction is negative --> flow dir is 0
                max_discharge = p.max_velocity * p.area
                equations.append(
                    (p.q_start - p.flow_dir * max_discharge, -np.inf, 0.0))
                equations.append((p.q_start + (1 - p.flow_dir) * max_discharge,
                                  0.0, np.inf))

                for a, b in zip(*_get_head_loss_coeffs(p.length, p.diameter /
                                                       1000)):
                    equations.append(
                        (p.head_loss - (a * p.q_start + b -
                                        (1 - p.flow_dir) * max_discharge), 0.0,
                         np.inf))
                    equations.append(
                        (-p.head_loss -
                         (a * -p.q_start + b - p.flow_dir * max_discharge),
                         0.0, np.inf))

    for n in nodes.values():
        equations.append((sum(n.q_balance), 0.0, 0.0))

    # Build the state vector with the appropriate bounds
    x = []
    lbx = []
    ubx = []
    discrete = []

    for n in nodes.values():
        if n.q_control is not None:
            x.append(n.q_control)
            lb, ub = n.q_bounds
            lbx.append(lb)
            ubx.append(ub)
            discrete.append(False)

    if head_loss_option >= HeadLossOption.LINEAR:
        for n in nodes.values():
            if n.head is not None:
                x.append(n.head)
                lb, ub = n.h_bounds
                lbx.append(lb)
                ubx.append(ub)
                discrete.append(False)

    for p in pipes.values():
        x.append(p.q_start)
        lb, ub = p.q_bounds
        lbx.append(lb)
        ubx.append(ub)
        discrete.append(False)

        x.append(p.q_end)
        lbx.append(lb)
        ubx.append(ub)
        discrete.append(False)

        if head_loss_option >= HeadLossOption.LINEAR:
            x.append(p.h_start)
            lbx.append(0.0)
            ubx.append(np.inf)
            discrete.append(False)

            x.append(p.h_end)
            lbx.append(0.0)
            ubx.append(np.inf)
            discrete.append(False)

            x.append(p.head_loss)
            lbx.append(-np.inf)
            ubx.append(np.inf)
            discrete.append(False)

        if head_loss_option == HeadLossOption.NONLINEAR:
            x.append(p.flow_dir)
            lbx.append(0.0)
            ubx.append(1.0)
            discrete.append(True)

    # Build the indices for easy lookup
    index_to_name = {i: v.name() for i, v in enumerate(x)}

    # Build the constraints
    g, lbg, ubg = zip(*equations)

    # Build the objective
    f = 0.0
    for n in nodes.values():
        f += n.objective**penalty_order

    # Construct the qp, and solve
    qp = {'f': f, 'g': ca.vertcat(*g), 'x': ca.vertcat(*x)}

    if head_loss_option <= HeadLossOption.LINEAR:
        print(head_loss_option)
        print(int(head_loss_option))
        if penalty_order == 1.0:
            solver = ca.qpsol('qp', 'clp', qp)
        else:
            solver = ca.nlpsol('qp', 'ipopt', qp, {"discrete": discrete})
    else:
        if penalty_order != 1.0:
            raise Exception(
                "Mixed-integer solving requires penalty order of 1.0 (for now)"
            )
        solver = ca.qpsol('qp', 'cbc', qp, {"discrete": discrete})

    ret = solver(lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)
    x_solved = np.array(ret['x']).ravel()
    results = {index_to_name[i]: x_solved[i] for i in range(len(x_solved))}

    shortage_dict = {}
    flow_dict = {}
    total_shortage = 0.0
    max_shortage = 0.0

    for n in nodes.values():
        if n.type == 'demand':
            if n.q_control is not None:
                q = results[n.q_control.name()]
                short = n.demand - q

                shortage_dict[n.id] = short
                total_shortage += short
                max_shortage = max(max_shortage, short)
            else:
                shortage_dict[n.id] = 0.0

    for p in pipes.values():
        flow_dict[p.id] = results[p.q_start.name()]

    return total_shortage, shortage_dict, flow_dict
Ejemplo n.º 8
0
def gen_mpc_solver(A, B, Hu, Hp, Q, R, B_d=None, S=None, operating_point=None):
    """
    Consult at p55 in Jan M. book for better understanding as well as casadi documentation
        :param A:(mxm) Model dynamics matrix of type casadi.DM
        :param B:(mxn) Input dynamics matrix of type casadi.DM
        :param Hu:(int) Control horizon of type Integer
        :param Hp: (int) Prediction horizon of type Integer
        :param Q:(mxm) State cost matrix of type casadi.DM
        :param R:(mxm) Input change cost matrix of type casadi.DM
        :param B_d:(mxn)
    """

    if B_d is None:
        B_d = B
    # TODO: Fix cost on Inputs u - Weight matrix S
    if S is None:
        S = ca.DM.zeros(R.size1(), R.size2())

    # Useful dimensions
    number_of_states = A.size1()
    number_of_inputs = B.size2()
    number_of_disturbances = B_d.size2()

    if operating_point is None:
        operating_point = ca.DM.zeros(number_of_states)

    # Index for input variable
    initial_state_index_end = number_of_states
    prev_control_input_index_end = initial_state_index_end + number_of_inputs
    reference_index_end = prev_control_input_index_end + Hp * number_of_states
    prev_disturbance_index_end = reference_index_end + number_of_disturbances
    delta_disturbances_input_index_end = prev_disturbance_index_end + Hp * number_of_disturbances

    # Declaring and parting out input variables
    # Input = [x0, u_prev, ref, ud_prev, ud]
    input_variables = ca.SX.sym('i', delta_disturbances_input_index_end, 1)
    x0 = input_variables[0:initial_state_index_end, :]
    u_prev = input_variables[
        initial_state_index_end:prev_control_input_index_end, :]
    ref = input_variables[prev_control_input_index_end:reference_index_end, :]
    ud_prev = input_variables[
        reference_index_end:prev_disturbance_index_end, :]
    dud = input_variables[
        prev_disturbance_index_end:delta_disturbances_input_index_end, :]

    # Declaring solver outputs
    x = ca.SX.sym('x', number_of_inputs * Hu, 1)
    du = x[:number_of_inputs * Hu]

    # The wrong way of declaring inputs
    # x0 = ca.SX.sym('x0', A.shape[0], 1)
    # u_prev = ca.SX.sym('u_prev', B.shape[1], 1)
    # ref = ca.SX.sym('ref', Hp * A.shape[0], 1)
    # input_variables = ca.vertcat(ca.vertcat(x0, u_prev), ref)

    # To formulate a MPC optimization problem we need to describe:
    # predicted_states  = Z = psi x(k) + upsilon u(k-1) + Theta dU(x) + upsilon ud(k-1) + Theta dUd(x)
    psi = gen_psi(A, Hp)
    upsilon = gen_upsilon(A, B, Hp)
    theta = gen_theta(upsilon, B, Hu)
    upsilon_d = gen_upsilon(A, B_d, Hp)
    theta_d = gen_theta(upsilon_d, B_d, Hp)
    predicted_states = gen_predicted_states(psi,
                                            x0,
                                            upsilon,
                                            u_prev,
                                            theta,
                                            du,
                                            upsilon_d,
                                            ud_prev,
                                            theta_d,
                                            dud,
                                            op=operating_point)

    # Setup constraints
    # construct U fom dU
    U = ca.SX.ones(du.size1())
    for i in range(0, number_of_inputs):
        U[i::number_of_inputs] = ca.cumsum(du[i::number_of_inputs])
    U = U + ca.repmat(u_prev, Hu, 1)
    constraints = ca.vertcat(predicted_states, U)

    # construct IU fom U
    IU = ca.SX.ones(du.size1())
    for i in range(0, number_of_inputs):
        IU[i::number_of_inputs] = ca.cumsum(U[i::number_of_inputs])

    constraints = ca.vertcat(predicted_states, U)
    # Cost function:
    # Cost = (Z - T)' * Q * (Z - T) + dU' * R * dU
    error = predicted_states - ref  # e = (Z - T)
    quadratic_cost = error.T @ Q @ error \
                     + du.T @ R @ du \
                     + IU.T @ S @ ca.DM.ones(U.size1(), U.size2())
    #+ U.T @ S @ U
    # + ca.norm_1(U.T @ S)
    # Setup Solver
    # set print level: search for 'printLevel' in link
    # http://casadi.sourceforge.net/v3.1.0/api/internal/de/d94/qpoases__interface_8cpp_source.html
    # "tabular"; "none"; "low"; "medium"; "high"; "debug_iter";
    opts = dict(printLevel='low')
    quadratic_problem = {
        'x': du,
        'p': input_variables,
        'f': quadratic_cost,
        'g': constraints
    }
    mpc_solver = ca.qpsol('mpc_solver', 'qpoases', quadratic_problem, opts)
    # print(quadratic_cost)
    print(mpc_solver)

    return mpc_solver
Ejemplo n.º 9
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import casadi as ca
import casadi.tools as ca_tools
import numpy as np
import time
import math

if __name__ == '__main__':
    print("begin the test program.")
    x = ca.SX.sym('x')  # 定义一 维变量x
    y = ca.SX.sym('y')  # 定义一 维变量y

    f = x ** 2 + y ** 2  # 定义目标函数

    qp = {'x': ca.vertcat(x, y), 'f': f, 'g': x + y - 10}
    S = ca.qpsol('S', 'qpoases', qp)  # 加载求解器
    print(S)
    r = S(lbg=0)  # 加载约束条件并进行求解
    x_opt = r['x']
    print('x_opt:', x_opt)  # 显示求解结果
    print(r['f'])
Ejemplo n.º 10
0
def solve_chain_mass_nmpc_qp(num_masses, num_intervals):
    time_step = 0.1

    u, y, dot_y = get_chain_mass_ode(num_masses)

    init_state = get_equilibrium_states(num_masses, y, dot_y, [0, 1, 0])
    ref_state = get_equilibrium_states(num_masses, y, dot_y, [1, 0, 0])

    # NMPC formulation:

    num_states = y.shape[0]
    num_controls = 3

    weights_states = numpy.ones(y.shape)
    weights_states[0:3 * num_masses] = 1e2
    weights_states[3 * num_masses:6 * num_masses] = 1e0
    weights_states[-3:] = 1e2

    weights_controls = numpy.ones((num_controls, 1)) * 1e-2

    # states 1..N
    states = casadi.SX.sym('states', num_states, num_intervals)
    # controls 0..N-1
    controls = casadi.SX.sym('controls', num_controls, num_intervals)

    weights_states_sqrt = numpy.sqrt(weights_states)
    weights_controls_sqrt = numpy.sqrt(weights_controls)

    objective_residuals = []
    ref_control = numpy.zeros(u.shape)
    for node in range(num_intervals):
        objective_residuals.append(
            (states[:, node] - ref_state) * weights_states_sqrt)
        objective_residuals.append(
            (controls[:, node] - ref_control) * weights_controls_sqrt)

    objective_residuals = casadi.veccat(*objective_residuals)

    ode = casadi.Function('ode', [u, y], [dot_y])

    rk4_k1 = ode(u, y)
    rk4_k2 = ode(u, y + time_step / 2.0 * rk4_k1)
    rk4_k3 = ode(u, y + time_step / 2.0 * rk4_k2)
    rk4_k4 = ode(u, y + time_step * rk4_k3)
    final_y = y + time_step / 6.0 * (rk4_k1 + 2 * rk4_k2 + 2 * rk4_k3 + rk4_k4)
    integrate = casadi.Function('integrate', [u, y], [final_y])

    states_for_integration = casadi.horzcat(init_state, states[:, :-1])
    integrated_states = integrate.map(num_intervals)(controls,
                                                     states_for_integration)
    equality_constraints = states - integrated_states
    equality_constraints = casadi.veccat(equality_constraints)

    # Prepare and condense the underlying QP.
    states_vec = casadi.veccat(states)
    controls_vec = casadi.veccat(controls)

    jac_obj_residuals_wrt_states = casadi.jacobian(objective_residuals,
                                                   states_vec)
    jac_obj_residuals_wrt_controls = casadi.jacobian(objective_residuals,
                                                     controls_vec)

    jac_eq_constraints_wrt_states = casadi.jacobian(equality_constraints,
                                                    states_vec)
    jac_eq_constraints_wrt_controls = casadi.jacobian(equality_constraints,
                                                      controls_vec)

    qp_h = jac_obj_residuals_wrt_controls.T @ jac_obj_residuals_wrt_controls

    delta_x_contrib = casadi.solve(jac_eq_constraints_wrt_states,
                                   jac_eq_constraints_wrt_controls)
    delta_x_qp_contrib = -jac_obj_residuals_wrt_states @ delta_x_contrib

    qp_h += delta_x_qp_contrib.T @ delta_x_qp_contrib

    qp_g = (jac_obj_residuals_wrt_controls +
            delta_x_qp_contrib).T @ objective_residuals

    states_lbx = numpy.zeros(y.shape)
    states_ubx = numpy.zeros(y.shape)

    states_lbx.fill(-numpy.inf)
    for m in range(num_masses):
        states_lbx[3 * m + 1] = -0.01
    states_ubx.fill(numpy.inf)

    qp_lb_a = []
    qp_ub_a = []

    for _ in range(num_intervals):
        qp_lb_a.append(states_lbx)
        qp_ub_a.append(states_ubx)
    qp_lb_a = numpy.concatenate(qp_lb_a, axis=0)
    qp_ub_a = numpy.concatenate(qp_ub_a, axis=0)

    init_states = numpy.concatenate([init_state for _ in range(num_intervals)],
                                    axis=0)
    delta_x_bound_contrib = casadi.solve(jac_eq_constraints_wrt_states,
                                         equality_constraints) + init_states

    qp_lb_a -= delta_x_bound_contrib
    qp_ub_a -= delta_x_bound_contrib

    qp_a = -delta_x_contrib

    qp_fcn = casadi.Function('qp_h_fcn', [controls_vec, states_vec],
                             [qp_h, qp_g, qp_a, qp_lb_a, qp_ub_a])

    init_controls = numpy.zeros(controls_vec.shape)
    qp_h_eval, qp_g_eval, qp_a_eval, qp_lb_a_eval, qp_ub_a_eval = qp_fcn(
        init_controls, init_states)

    qp_lbx = -numpy.ones(qp_g.shape)
    qp_ubx = numpy.ones(qp_g.shape)

    # Reduce the number of rows of the A-matrix to the minimum.
    qp_a_indices = []
    for el in range(qp_lb_a.shape[0]):
        if qp_lb_a_eval[el] <= -numpy.inf and qp_ub_a_eval[el] >= numpy.inf:
            continue
        qp_a_indices.append(el)

    qp_lb_a_eval = qp_lb_a_eval[qp_a_indices]
    qp_ub_a_eval = qp_ub_a_eval[qp_a_indices]
    qp_a_eval = qp_a_eval[qp_a_indices, :]

    qp_x = casadi.SX.sym('qp_x', *qp_g.shape)
    qp = {
        'x': qp_x,
        'f': 0.5 * qp_x.T @ qp_h_eval @ qp_x + qp_x.T @ qp_g_eval,
        'g': casadi.densify(qp_a_eval @ qp_x)
    }

    qp_solver = casadi.qpsol('qp_solver', 'qpoases', qp)

    sol = qp_solver(lbx=qp_lbx, ubx=qp_ubx, lbg=qp_lb_a_eval, ubg=qp_ub_a_eval)

    x_opt = numpy.asarray(sol['x']).flatten()
    y_opt = numpy.asarray(-casadi.vertcat(sol['lam_x'], sol['lam_g']))
    f_opt = sol['f']

    num_variables = qp_x.shape[0]
    num_constraints = qp_a_eval.shape[0]

    qp_h_flat = numpy.asarray(qp_h_eval).flatten()
    qp_g_flat = numpy.asarray(qp_g_eval).flatten()
    qp_a_flat = numpy.asarray(qp_a_eval).flatten()
    qp_lb_a_flat = numpy.asarray(qp_lb_a_eval).flatten()
    qp_ub_a_flat = numpy.asarray(qp_ub_a_eval).flatten()

    return (num_variables, num_constraints, qp_h_flat, qp_g_flat, qp_a_flat,
            qp_lbx, qp_ubx, qp_lb_a_flat, qp_ub_a_flat, x_opt, y_opt, f_opt)
Ejemplo n.º 11
0
def solve_hanging_chain_qp(num_masses, use_contraints):
    m_i = 40.0 / num_masses
    D_i = 70.0 * num_masses
    g0 = 9.81
    zmin = 0.5  # ground

    x = []
    f = 0
    g = []

    lbx = []
    ubx = []
    lbg = []
    ubg = []

    y_start, z_start = -2, 1
    y_end, z_end = 2, 1

    # Loop over all chain elements
    y_prev = z_prev = None
    for i in range(0, num_masses):
        # Create variables for the (y_i, z_i) coordinates
        y_i = casadi.SX.sym('y_' + str(i))
        z_i = casadi.SX.sym('z_' + str(i))

        # Add to the list of variables
        x += [y_i, z_i]

        lbx += [-numpy.inf, zmin]
        ubx += [numpy.inf, numpy.inf]

        # Spring potential
        if i == 0:
            f += D_i / 2 * ((y_start - y_i)**2 + (z_start - z_i)**2)
        else:
            f += D_i / 2 * ((y_prev - y_i)**2 + (z_prev - z_i)**2)

        # Graviational potential
        f += g0 * m_i * z_i

        # Slanted ground constraints
        if use_contraints:
            g.append(z_i - 0.1 * y_i)
            lbg.append(0.5)
            ubg.append(numpy.inf)

        # Prepare for the next iteration
        y_prev = y_i
        z_prev = z_i

    f += D_i / 2 * ((y_i - y_end)**2 + (z_i - z_end)**2)

    num_variables = len(x)
    num_constraints = len(g)

    x = casadi.vertcat(*x)
    g = casadi.vertcat(*g)
    qp = {'x': x, 'f': f, 'g': g}
    solver = casadi.qpsol('solver', 'qpoases', qp)

    gradient_f = casadi.gradient(f, x)
    h = casadi.jacobian(gradient_f, x, {'symmetric': True})
    c = casadi.substitute(gradient_f, x, casadi.SX.zeros(x.sparsity()))
    a = casadi.jacobian(g, x)

    prob = casadi.Function("qp_eval", [x], [h, c, a])
    qp_items = prob(casadi.SX.sym('eval_args', x.shape))
    h_flat = numpy.asarray(casadi.DM(qp_items[0]))
    c_flat = numpy.asarray(casadi.DM(qp_items[1]))
    a_flat = numpy.asarray(casadi.DM(qp_items[2]))

    sol = solver(lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)

    x_opt = numpy.asarray(sol['x']).flatten()
    y_opt = numpy.asarray(-casadi.vertcat(sol['lam_x'], sol['lam_g']))
    f_opt = sol['f']

    return (num_variables, num_constraints, h_flat, c_flat, a_flat,
            numpy.asarray(lbx), numpy.asarray(ubx), numpy.asarray(lbg),
            numpy.asarray(ubg), x_opt, y_opt, f_opt)
Ejemplo n.º 12
0
# Build the constraints
g = equations
lbg = [0.0] * len(g)
ubg = lbg.copy()

# Build the objective
f = 0.0
for n in nodes.values():
    f += n.objective

# In[104]:

# Construct the qp, and solver
qp = {'f': f, 'g': ca.vertcat(*g), 'x': ca.vertcat(*x)}

solver = ca.qpsol('qp', 'clp', qp, {})

# In[105]:

results = solver(lbx=lbx, ubx=ubx, lbg=lbg, ubg=ubg)

# In[112]:

total_shortage = 0
max_shortage = 0

i = 0
for n in nodes.values():
    if n.q_control is not None:
        print("Node", n.id, n.type, n.demand, results['x'][i])
Ejemplo n.º 13
0
 def _create_solver(self):
     problem_dict = self.get_problem_dict()
     return qpsol(self.name + '_solver', 'qpoases', problem_dict,
                  self.solver_options)
Ejemplo n.º 14
0
import casadi as ca

# opts = dict(printLevel='1') # {'qpoases':{'printLevel':0}}

opts = {"printLevel": 0}
mpc_solver = ca.qpsol('mpc_solver', 'qpoases', {}, opts)