Ejemplo n.º 1
0
def get_contrastive_model(feature_dim: int) -> ContrastiveModel:
    """Init contrastive model based on parsed parametrs.

    Args:
        feature_dim: dimensinality of contrative projection

    Returns:
        ContrstiveModel instance
    """
    encoder = nn.Sequential(ResnetEncoder(arch="resnet50", frozen=False),
                            nn.Flatten())
    projection_head = nn.Sequential(
        nn.Linear(2048, 512, bias=False),
        nn.ReLU(inplace=True),
        nn.Linear(512, feature_dim, bias=True),
    )
    model = ContrastiveModel(projection_head, encoder)
    return model
Ejemplo n.º 2
0
def test_soft_update_not_work():

    model = nn.ModuleDict({
        "target": nn.Linear(10, 10, bias=False),
        "source": nn.Linear(10, 10, bias=False)
    })
    set_requires_grad(model, False)
    model["target"].weight.data.fill_(0)

    runner = DummyRunner(model=model)
    runner.is_train_loader = True

    soft_update = dl.SoftUpdateCallaback(target_model_key="target",
                                         source_model_key="source",
                                         tau=0.1,
                                         scope="on_batch_start")
    soft_update.on_batch_end(runner)

    checks = (runner.model["target"].weight.data == 0).flatten().tolist()

    assert all(checks)
def train_experiment(device, engine=None):
    with TemporaryDirectory() as logdir:
        from catalyst import utils

        utils.set_global_seed(RANDOM_STATE)
        # 1. train, valid and test loaders
        transforms = Compose([ToTensor(), Normalize((0.1307, ), (0.3081, ))])

        train_data = MNIST(os.getcwd(),
                           train=True,
                           download=True,
                           transform=transforms)
        train_labels = train_data.targets.cpu().numpy().tolist()
        train_sampler = data.BatchBalanceClassSampler(train_labels,
                                                      num_classes=10,
                                                      num_samples=4)
        train_loader = DataLoader(train_data, batch_sampler=train_sampler)

        valid_dataset = MNIST(root=os.getcwd(),
                              transform=transforms,
                              train=False,
                              download=True)
        valid_loader = DataLoader(dataset=valid_dataset, batch_size=32)

        test_dataset = MNIST(root=os.getcwd(),
                             transform=transforms,
                             train=False,
                             download=True)
        test_loader = DataLoader(dataset=test_dataset, batch_size=32)

        # 2. model and optimizer
        model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 16),
                              nn.LeakyReLU(inplace=True))
        optimizer = Adam(model.parameters(), lr=LR)
        scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

        # 3. criterion with triplets sampling
        sampler_inbatch = data.HardTripletsSampler(norm_required=False)
        criterion = nn.TripletMarginLossWithSampler(
            margin=0.5, sampler_inbatch=sampler_inbatch)

        # 4. training with catalyst Runner
        class CustomRunner(dl.SupervisedRunner):
            def handle_batch(self, batch) -> None:
                images, targets = batch["features"].float(
                ), batch["targets"].long()
                features = self.model(images)
                self.batch = {
                    "embeddings": features,
                    "targets": targets,
                }

        callbacks = [
            dl.ControlFlowCallback(
                dl.CriterionCallback(input_key="embeddings",
                                     target_key="targets",
                                     metric_key="loss"),
                loaders="train",
            ),
            dl.SklearnModelCallback(
                feature_key="embeddings",
                target_key="targets",
                train_loader="train",
                valid_loaders=["valid", "infer"],
                model_fn=RandomForestClassifier,
                predict_method="predict_proba",
                predict_key="sklearn_predict",
                random_state=RANDOM_STATE,
                n_estimators=50,
            ),
            dl.ControlFlowCallback(
                dl.AccuracyCallback(target_key="targets",
                                    input_key="sklearn_predict",
                                    topk_args=(1, 3)),
                loaders=["valid", "infer"],
            ),
        ]

        runner = CustomRunner(input_key="features", output_key="embeddings")
        runner.train(
            engine=engine or dl.DeviceEngine(device),
            model=model,
            criterion=criterion,
            optimizer=optimizer,
            scheduler=scheduler,
            callbacks=callbacks,
            loaders={
                "train": train_loader,
                "valid": valid_loader,
                "infer": test_loader
            },
            verbose=False,
            valid_loader="valid",
            valid_metric="accuracy",
            minimize_valid_metric=False,
            num_epochs=TRAIN_EPOCH,
            logdir=logdir,
        )

        valid_path = Path(logdir) / "logs/infer.csv"
        best_accuracy = max(
            float(row["accuracy"]) for row in read_csv(valid_path))

        assert best_accuracy > 0.8
def train_experiment(device, engine=None):
    with TemporaryDirectory() as logdir:
        from catalyst import utils

        utils.set_global_seed(RANDOM_STATE)
        # 1. generate data
        num_samples, num_features, num_classes = int(1e4), int(30), 3
        X, y = make_classification(
            n_samples=num_samples,
            n_features=num_features,
            n_informative=num_features,
            n_repeated=0,
            n_redundant=0,
            n_classes=num_classes,
            n_clusters_per_class=1,
        )
        X, y = torch.tensor(X), torch.tensor(y)
        dataset = TensorDataset(X, y)
        loader = DataLoader(dataset,
                            batch_size=64,
                            num_workers=1,
                            shuffle=True)

        # 2. model, optimizer and scheduler
        hidden_size, out_features = 20, 16
        model = nn.Sequential(nn.Linear(num_features, hidden_size), nn.ReLU(),
                              nn.Linear(hidden_size, out_features))
        optimizer = Adam(model.parameters(), lr=LR)
        scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

        # 3. criterion with triplets sampling
        sampler_inbatch = data.HardTripletsSampler(norm_required=False)
        criterion = nn.TripletMarginLossWithSampler(
            margin=0.5, sampler_inbatch=sampler_inbatch)

        # 4. training with catalyst Runner
        class CustomRunner(dl.SupervisedRunner):
            def handle_batch(self, batch) -> None:
                features, targets = batch["features"].float(
                ), batch["targets"].long()
                embeddings = self.model(features)
                self.batch = {
                    "embeddings": embeddings,
                    "targets": targets,
                }

        callbacks = [
            dl.SklearnModelCallback(
                feature_key="embeddings",
                target_key="targets",
                train_loader="train",
                valid_loaders="valid",
                model_fn=RandomForestClassifier,
                predict_method="predict_proba",
                predict_key="sklearn_predict",
                random_state=RANDOM_STATE,
                n_estimators=100,
            ),
            dl.ControlFlowCallback(
                dl.AccuracyCallback(target_key="targets",
                                    input_key="sklearn_predict",
                                    topk_args=(1, 3)),
                loaders="valid",
            ),
        ]

        runner = CustomRunner(input_key="features", output_key="embeddings")
        runner.train(
            engine=engine or dl.DeviceEngine(device),
            model=model,
            criterion=criterion,
            optimizer=optimizer,
            callbacks=callbacks,
            scheduler=scheduler,
            loaders={
                "train": loader,
                "valid": loader
            },
            verbose=False,
            valid_loader="valid",
            valid_metric="accuracy",
            minimize_valid_metric=False,
            num_epochs=TRAIN_EPOCH,
            logdir=logdir,
        )

        valid_path = Path(logdir) / "logs/valid.csv"
        best_accuracy = max(
            float(row["accuracy"]) for row in read_csv(valid_path))

        assert best_accuracy > 0.9
Ejemplo n.º 5
0
 def __init__(self, num_features: int, num_classes: int) -> None:
     super().__init__()
     self.model = nn.Sequential(
         nn.Flatten(),
         nn.Linear(in_features=num_features, out_features=num_classes))
Ejemplo n.º 6
0
def train_experiment(device, engine=None):

    with TemporaryDirectory() as logdir:

        # 1. data and transforms

        transforms = Compose([
            torchvision.transforms.ToPILImage(),
            torchvision.transforms.RandomCrop((28, 28)),
            torchvision.transforms.RandomVerticalFlip(),
            torchvision.transforms.RandomHorizontalFlip(),
            torchvision.transforms.ToTensor(),
            Normalize((0.1307, ), (0.3081, )),
        ])

        transform_original = Compose([
            ToTensor(),
            Normalize((0.1307, ), (0.3081, )),
        ])

        mnist = MNIST("./logdir", train=True, download=True, transform=None)
        contrastive_mnist = SelfSupervisedDatasetWrapper(
            mnist,
            transforms=transforms,
            transform_original=transform_original)
        train_loader = torch.utils.data.DataLoader(contrastive_mnist,
                                                   batch_size=BATCH_SIZE)

        mnist_valid = MNIST("./logdir",
                            train=False,
                            download=True,
                            transform=None)
        contrastive_valid = SelfSupervisedDatasetWrapper(
            mnist_valid,
            transforms=transforms,
            transform_original=transform_original)
        valid_loader = torch.utils.data.DataLoader(contrastive_valid,
                                                   batch_size=BATCH_SIZE)

        # 2. model and optimizer
        encoder = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 16),
                                nn.LeakyReLU(inplace=True))
        projection_head = nn.Sequential(
            nn.Linear(16, 16, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(16, 16, bias=True),
        )

        class ContrastiveModel(torch.nn.Module):
            def __init__(self, model, encoder):
                super(ContrastiveModel, self).__init__()
                self.model = model
                self.encoder = encoder

            def forward(self, x):
                emb = self.encoder(x)
                projection = self.model(emb)
                return emb, projection

        model = ContrastiveModel(model=projection_head, encoder=encoder)

        optimizer = Adam(model.parameters(), lr=LR)

        # 3. criterion with triplets sampling
        criterion = NTXentLoss(tau=0.1)

        callbacks = [
            dl.ControlFlowCallback(
                dl.CriterionCallback(input_key="projection_left",
                                     target_key="projection_right",
                                     metric_key="loss"),
                loaders="train",
            ),
            dl.SklearnModelCallback(
                feature_key="embedding_left",
                target_key="target",
                train_loader="train",
                valid_loaders="valid",
                model_fn=RandomForestClassifier,
                predict_method="predict_proba",
                predict_key="sklearn_predict",
                random_state=RANDOM_STATE,
                n_estimators=50,
            ),
            dl.ControlFlowCallback(
                dl.AccuracyCallback(target_key="target",
                                    input_key="sklearn_predict",
                                    topk_args=(1, 3)),
                loaders="valid",
            ),
        ]

        runner = dl.SelfSupervisedRunner()

        logdir = "./logdir"
        runner.train(
            model=model,
            engine=engine or dl.DeviceEngine(device),
            criterion=criterion,
            optimizer=optimizer,
            callbacks=callbacks,
            loaders={
                "train": train_loader,
                "valid": valid_loader
            },
            verbose=False,
            logdir=logdir,
            valid_loader="train",
            valid_metric="loss",
            minimize_valid_metric=True,
            num_epochs=TRAIN_EPOCH,
        )

        valid_path = Path(logdir) / "logs/valid.csv"
        best_accuracy = max(
            float(row["accuracy"]) for row in read_csv(valid_path)
            if row["accuracy"] != "accuracy")

        assert best_accuracy > 0.6
Ejemplo n.º 7
0
        cifar_train,
        transforms=transforms,
        transform_original=transform_original)
    train_loader = torch.utils.data.DataLoader(simCLR_train,
                                               batch_size=batch_size,
                                               num_workers=args.num_workers)

    # cifar_test = CifarQGDataset(root="./data", download=True)
    # valid_loader = torch.utils.data.DataLoader(
    #     simCLRDatasetWrapper(cifar_test, transforms=transforms), batch_size=batch_size, num_workers=5
    # )

    encoder = nn.Sequential(ResnetEncoder(arch="resnet18", frozen=False),
                            nn.Flatten())
    projection_head = nn.Sequential(
        nn.Linear(2048, 512, bias=False),
        nn.ReLU(inplace=True),
        nn.Linear(512, args.feature_dim, bias=True),
    )

    class ContrastiveModel(torch.nn.Module):
        def __init__(self, model, encoder):
            super(ContrastiveModel, self).__init__()
            self.model = model
            self.encoder = encoder

        def forward(self, x):
            emb = self.encoder(x)
            projection = self.model(emb)
            return emb, projection