Ejemplo n.º 1
0
    def test_inspect(self):
        data = arange(15, dtype=float).reshape(5, 3)
        adj_array = AdjustedArray(
            data,
            NOMASK,
            {4: [Float64Multiply(2, 3, 0, 0, 4.0)]},
            float('nan'),
        )

        expected = dedent(
            """\
            Adjusted Array (float64):

            Data:
            array([[  0.,   1.,   2.],
                   [  3.,   4.,   5.],
                   [  6.,   7.,   8.],
                   [  9.,  10.,  11.],
                   [ 12.,  13.,  14.]])

            Adjustments:
            {4: [Float64Multiply(first_row=2, last_row=3, first_col=0, \
last_col=0, value=4.000000)]}
            """
        )
        got = adj_array.inspect()
        self.assertEqual(expected, got)
    def _test_inspect(self):
        data = arange(15, dtype=float).reshape(5, 3)
        adj_array = AdjustedArray(
            data,
            NOMASK,
            {4: [Float64Multiply(2, 3, 0, 0, 4.0)]},
            float('nan'),
        )

        expected = dedent("""\
            Adjusted Array (float64):

            Data:
            array([[  0.,   1.,   2.],
                   [  3.,   4.,   5.],
                   [  6.,   7.,   8.],
                   [  9.,  10.,  11.],
                   [ 12.,  13.,  14.]])

            Adjustments:
            {4: [Float64Multiply(first_row=2, last_row=3, first_col=0, \
last_col=0, value=4.000000)]}
            """)
        got = adj_array.inspect()
        self.assertEqual(expected, got)
    def test_array_views_arent_writable(self):

        data = arange(30, dtype=float).reshape(6, 5)
        adj_array = AdjustedArray(data, NOMASK, {}, float('nan'))

        for frame in adj_array.traverse(3):
            with self.assertRaises(ValueError):
                frame[0, 0] = 5.0
Ejemplo n.º 4
0
    def test_array_views_arent_writable(self):

        data = arange(30, dtype=float).reshape(6, 5)
        adj_array = AdjustedArray(data, NOMASK, {}, float('nan'))

        for frame in adj_array.traverse(3):
            with self.assertRaises(ValueError):
                frame[0, 0] = 5.0
Ejemplo n.º 5
0
    def load_adjusted_array(self, columns, dates, assets, mask):
        # load_adjusted_array is called with dates on which the user's algo
        # will be shown data, which means we need to return the data that would
        # be known at the start of each date.  We assume that the latest data
        # known on day N is the data from day (N - 1), so we shift all query
        # dates back by a day.
        start_date, end_date = _shift_dates(
            self._all_sessions, dates[0], dates[-1], shift=1,
        )
        colnames = [c.name for c in columns]
        raw_arrays = self.raw_price_loader.load_raw_arrays(
            colnames,
            start_date,
            end_date,
            assets,
        )

        out = {}
        for c, c_raw in zip(columns, raw_arrays):
            out[c] = AdjustedArray(
                c_raw.astype(c.dtype),
                mask,
                {},
                c.missing_value,
            )
        return out
    def test_bad_input(self):
        msg = "Mask shape \(2L?, 3L?\) != data shape \(5L?, 5L?\)"
        data = arange(25).reshape(5, 5)
        bad_mask = array([[0, 1, 1], [0, 0, 1]], dtype=bool)

        with self.assertRaisesRegexp(ValueError, msg):
            AdjustedArray(data, bad_mask, {}, missing_value=-1)
Ejemplo n.º 7
0
    def _test_bollinger_bands(self, window_length, k, mask_last_sid):
        closes = self.closes(mask_last_sid=mask_last_sid)
        mask = ~np.isnan(closes)
        bbands = BollingerBands(window_length=window_length, k=k)

        expected = self.expected_bbands(window_length, k, closes)

        self.check_terms(
            terms={
                'upper': bbands.upper,
                'middle': bbands.middle,
                'lower': bbands.lower,
            },
            expected={
                'upper': expected[0],
                'middle': expected[1],
                'lower': expected[2],
            },
            initial_workspace={
                USEquityPricing.close: AdjustedArray(
                    data=closes,
                    mask=mask,
                    adjustments={},
                    missing_value=np.nan,
                ),
            },
            mask=self.build_mask(mask),
        )
Ejemplo n.º 8
0
    def load_adjusted_array(self, columns, dates, assets, mask):
        """
        Load data from our stored baseline.
        """
        column = self.column
        if len(columns) != 1:
            raise ValueError(
                "Can't load multiple columns with DataFrameLoader")
        elif columns[0] != column:
            raise ValueError("Can't load unknown column %s" % columns[0])

        date_indexer = self.dates.get_indexer(dates)
        assets_indexer = self.assets.get_indexer(assets)

        # Boolean arrays with True on matched entries
        good_dates = (date_indexer != -1)
        good_assets = (assets_indexer != -1)

        return {
            column:
            AdjustedArray(
                # Pull out requested columns/rows from our baseline data.
                data=self.baseline[ix_(date_indexer, assets_indexer)],
                # Mask out requested columns/rows that didnt match.
                mask=(good_assets & as_column(good_dates)) & mask,
                adjustments=self.format_adjustments(dates, assets),
                missing_value=column.missing_value,
            ),
        }
    def test_no_adjustments(self, name, data, lookback, adjustments,
                            missing_value, perspective_offset,
                            expected_output):

        array = AdjustedArray(data, NOMASK, adjustments, missing_value)
        for _ in range(2):  # Iterate 2x ensure adjusted_arrays are re-usable.
            in_out = zip(array.traverse(lookback), expected_output)
            for yielded, expected_yield in in_out:
                check_arrays(yielded, expected_yield)
    def test_invalid_lookback(self):

        data = arange(30, dtype=float).reshape(6, 5)
        adj_array = AdjustedArray(data, NOMASK, {}, float('nan'))

        with self.assertRaises(WindowLengthTooLong):
            adj_array.traverse(7)

        with self.assertRaises(WindowLengthNotPositive):
            adj_array.traverse(0)

        with self.assertRaises(WindowLengthNotPositive):
            adj_array.traverse(-1)
    def test_overwrite_adjustment_cases(self, name, baseline, lookback,
                                        adjustments, missing_value,
                                        perspective_offset, expected):
        array = AdjustedArray(baseline, NOMASK, adjustments, missing_value)

        for _ in range(2):  # Iterate 2x ensure adjusted_arrays are re-usable.
            window_iter = array.traverse(
                lookback,
                perspective_offset=perspective_offset,
            )
            for yielded, expected_yield in zip_longest(window_iter, expected):
                check_arrays(yielded, expected_yield)
Ejemplo n.º 12
0
    def test_invalid_lookback(self):

        data = arange(30, dtype=float).reshape(6, 5)
        adj_array = AdjustedArray(data, NOMASK, {}, float('nan'))

        with self.assertRaises(WindowLengthTooLong):
            adj_array.traverse(7)

        with self.assertRaises(WindowLengthNotPositive):
            adj_array.traverse(0)

        with self.assertRaises(WindowLengthNotPositive):
            adj_array.traverse(-1)
    def test_masking(self, dtype, missing_value, window_length):
        missing_value = coerce_to_dtype(dtype, missing_value)
        baseline_ints = arange(15).reshape(5, 3)
        baseline = baseline_ints.astype(dtype)
        mask = (baseline_ints % 2).astype(bool)
        masked_baseline = where(mask, baseline, missing_value)

        array = AdjustedArray(
            baseline,
            mask,
            adjustments={},
            missing_value=missing_value,
        )

        gen_expected = moving_window(masked_baseline, window_length)
        gen_actual = array.traverse(window_length)
        for expected, actual in zip(gen_expected, gen_actual):
            check_arrays(expected, actual)
Ejemplo n.º 14
0
    def load_adjusted_array(self, columns, dates, assets, mask):
        # load_adjusted_array is called with dates on which the user's algo
        # will be shown data, which means we need to return the data that would
        # be known at the start of each date.  We assume that the latest data
        # known on day N is the data from day (N - 1), so we shift all query
        # dates back by a day.
        start_date, end_date = _shift_dates(
            self._all_sessions,
            dates[0],
            dates[-1],
            shift=1,
        )
        colnames = [c.name for c in columns]

        if len(assets) == 0:
            raise ValueError('Pipeline cannot load data with eligible assets.')

        exchange_names = []
        for asset in assets:
            if asset.exchange not in exchange_names:
                exchange_names.append(asset.exchange)

        exchange = get_exchange(exchange_names[0])
        reader = exchange.bundle.get_reader(self.data_frequency)

        raw_arrays = reader.load_raw_arrays(
            colnames,
            start_date,
            end_date,
            assets,
        )

        out = {}
        for c, c_raw in zip(columns, raw_arrays):
            out[c] = AdjustedArray(
                c_raw.astype(c.dtype),
                mask,
                {},
                c.missing_value,
            )
        return out
    def test_masking_with_strings(self, dtype, missing_value, window_length):
        missing_value = coerce_to_dtype(dtype, missing_value)
        baseline_ints = arange(15).reshape(5, 3)

        # Coerce to string first so that coercion to object gets us an array of
        # string objects.
        baseline = baseline_ints.astype(str).astype(dtype)
        mask = (baseline_ints % 2).astype(bool)

        masked_baseline = LabelArray(baseline, missing_value=missing_value)
        masked_baseline[~mask] = missing_value

        array = AdjustedArray(
            baseline,
            mask,
            adjustments={},
            missing_value=missing_value,
        )

        gen_expected = moving_window(masked_baseline, window_length)
        gen_actual = array.traverse(window_length=window_length)

        for expected, actual in zip(gen_expected, gen_actual):
            check_arrays(expected, actual)
Ejemplo n.º 16
0
    def _load_dataset(self, dates, assets, mask, columns):
        try:
            (dataset, ) = set(map(getdataset, columns))
        except ValueError:
            raise AssertionError('all columns must come from the same dataset')

        expr, deltas, checkpoints, odo_kwargs, apply_deltas_adjustments = self[
            dataset]
        have_sids = (dataset.ndim == 2)
        asset_idx = pd.Series(index=assets, data=np.arange(len(assets)))
        assets = list(map(int, assets))  # coerce from numpy.int64
        added_query_fields = {AD_FIELD_NAME, TS_FIELD_NAME
                              } | ({SID_FIELD_NAME} if have_sids else set())
        requested_columns = set(map(getname, columns))
        colnames = sorted(added_query_fields | requested_columns)

        data_query_time = self._data_query_time
        data_query_tz = self._data_query_tz
        lower_dt, upper_dt = normalize_data_query_bounds(
            dates[0],
            dates[-1],
            data_query_time,
            data_query_tz,
        )

        def collect_expr(e, lower):
            """Materialize the expression as a dataframe.

            Parameters
            ----------
            e : Expr
                The baseline or deltas expression.
            lower : datetime
                The lower time bound to query.

            Returns
            -------
            result : pd.DataFrame
                The resulting dataframe.

            Notes
            -----
            This can return more data than needed. The in memory reindex will
            handle this.
            """
            predicate = e[TS_FIELD_NAME] <= upper_dt
            if lower is not None:
                predicate &= e[TS_FIELD_NAME] >= lower

            return odo(e[predicate][colnames], pd.DataFrame, **odo_kwargs)

        lower, materialized_checkpoints = get_materialized_checkpoints(
            checkpoints, colnames, lower_dt, odo_kwargs)

        materialized_expr = self.pool.apply_async(collect_expr, (expr, lower))
        materialized_deltas = (self.pool.apply(collect_expr,
                                               (deltas, lower)) if deltas
                               is not None else pd.DataFrame(columns=colnames))

        if materialized_checkpoints is not None:
            materialized_expr = pd.concat(
                (
                    materialized_checkpoints,
                    materialized_expr.get(),
                ),
                ignore_index=True,
                copy=False,
            )

        # It's not guaranteed that assets returned by the engine will contain
        # all sids from the deltas table; filter out such mismatches here.
        if not materialized_deltas.empty and have_sids:
            materialized_deltas = materialized_deltas[
                materialized_deltas[SID_FIELD_NAME].isin(assets)]

        if data_query_time is not None:
            for m in (materialized_expr, materialized_deltas):
                m.loc[:, TS_FIELD_NAME] = m.loc[:, TS_FIELD_NAME].astype(
                    'datetime64[ns]')

                normalize_timestamp_to_query_time(
                    m,
                    data_query_time,
                    data_query_tz,
                    inplace=True,
                    ts_field=TS_FIELD_NAME,
                )

        # Inline the deltas that changed our most recently known value.
        # Also, we reindex by the dates to create a dense representation of
        # the data.
        sparse_output, non_novel_deltas = overwrite_novel_deltas(
            materialized_expr,
            materialized_deltas,
            dates,
        )
        # If we ever have cases where we find out about multiple asof_dates'
        # data on the same TS, we want to make sure that last_in_date_group
        # selects the correct last asof_date's value.
        sparse_output.sort_values(AD_FIELD_NAME, inplace=True)
        non_novel_deltas.sort_values(AD_FIELD_NAME, inplace=True)
        if AD_FIELD_NAME not in requested_columns:
            sparse_output.drop(AD_FIELD_NAME, axis=1, inplace=True)

        sparse_deltas = last_in_date_group(non_novel_deltas,
                                           dates,
                                           assets,
                                           reindex=False,
                                           have_sids=have_sids)
        dense_output = last_in_date_group(sparse_output,
                                          dates,
                                          assets,
                                          reindex=True,
                                          have_sids=have_sids)
        ffill_across_cols(dense_output, columns,
                          {c.name: c.name
                           for c in columns})

        # By default, no non-novel deltas are applied.
        def no_adjustments_from_deltas(*args):
            return {}

        adjustments_from_deltas = no_adjustments_from_deltas
        if have_sids:
            if apply_deltas_adjustments:
                adjustments_from_deltas = adjustments_from_deltas_with_sids
            column_view = identity
        else:
            # If we do not have sids, use the column view to make a single
            # column vector which is unassociated with any assets.
            column_view = op.itemgetter(np.s_[:, np.newaxis])
            if apply_deltas_adjustments:
                adjustments_from_deltas = adjustments_from_deltas_no_sids
            mask = np.full(
                shape=(len(mask), 1),
                fill_value=True,
                dtype=bool_dtype,
            )

        return {
            column: AdjustedArray(
                column_view(
                    dense_output[column.name].values.astype(column.dtype), ),
                mask,
                adjustments_from_deltas(
                    dates,
                    sparse_output[TS_FIELD_NAME].values,
                    column_idx,
                    column.name,
                    asset_idx,
                    sparse_deltas,
                ),
                column.missing_value,
            )
            for column_idx, column in enumerate(columns)
        }