Ejemplo n.º 1
0
    def test_regression_method_bad_type(self):
        """
        Make sure we cannot call the Factor linear regression method on factors
        or slices that are not of float or int dtype.
        """
        # These are arbitrary for the purpose of this test.
        returns_length = 2
        regression_length = 10

        returns = Returns(window_length=returns_length, inputs=[self.col])
        returns_slice = returns[self.my_asset]

        class BadTypeFactor(CustomFactor):
            window_length = 1
            inputs = []
            dtype = datetime64ns_dtype
            window_safe = True

            def compute(self, today, assets, out):
                pass

        bad_type_factor = BadTypeFactor()
        bad_type_factor_slice = bad_type_factor[self.my_asset]

        with self.assertRaises(TypeError):
            bad_type_factor.linear_regression(
                target=returns_slice, regression_length=regression_length,
            )
        with self.assertRaises(TypeError):
            returns.linear_regression(
                target=bad_type_factor_slice,
                regression_length=regression_length,
            )
Ejemplo n.º 2
0
    def test_factor_correlation_methods(self,
                                        returns_length,
                                        correlation_length):
        """
        Ensure that `Factor.pearsonr` and `Factor.spearmanr` are consistent
        with the built-in factors `RollingPearsonOfReturns` and
        `RollingSpearmanOfReturns`.
        """
        my_asset = self.my_asset
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        run_pipeline = self.run_pipeline

        returns = Returns(window_length=returns_length, inputs=[self.col])
        returns_slice = returns[my_asset]

        pearson = returns.pearsonr(
            target=returns_slice, correlation_length=correlation_length,
        )
        spearman = returns.spearmanr(
            target=returns_slice, correlation_length=correlation_length,
        )
        expected_pearson = RollingPearsonOfReturns(
            target=my_asset,
            returns_length=returns_length,
            correlation_length=correlation_length,
        )
        expected_spearman = RollingSpearmanOfReturns(
            target=my_asset,
            returns_length=returns_length,
            correlation_length=correlation_length,
        )

        # These built-ins construct their own Returns factor to use as inputs,
        # so the only way to set our own inputs is to do so after the fact.
        # This should not be done in practice. It is necessary here because we
        # want Returns to use our random data as an input, but by default it is
        # using USEquityPricing.close.
        expected_pearson.inputs = [returns, returns_slice]
        expected_spearman.inputs = [returns, returns_slice]

        columns = {
            'pearson': pearson,
            'spearman': spearman,
            'expected_pearson': expected_pearson,
            'expected_spearman': expected_spearman,
        }

        results = run_pipeline(Pipeline(columns=columns), start_date, end_date)
        pearson_results = results['pearson'].unstack()
        spearman_results = results['spearman'].unstack()
        expected_pearson_results = results['expected_pearson'].unstack()
        expected_spearman_results = results['expected_spearman'].unstack()

        assert_frame_equal(pearson_results, expected_pearson_results)
        assert_frame_equal(spearman_results, expected_spearman_results)
Ejemplo n.º 3
0
    def test_slice(self, my_asset_column, window_length_):
        """
        Test that slices can be created by indexing into a term, and that they
        have the correct shape when used as inputs.
        """
        sids = self.sids
        my_asset = self.asset_finder.retrieve_asset(self.sids[my_asset_column])

        returns = Returns(window_length=2, inputs=[self.col])
        returns_slice = returns[my_asset]

        class UsesSlicedInput(CustomFactor):
            window_length = window_length_
            inputs = [returns, returns_slice]

            def compute(self, today, assets, out, returns, returns_slice):
                # Make sure that our slice is the correct shape (i.e. has only
                # one column) and that it has the same values as the original
                # returns factor from which it is derived.
                assert returns_slice.shape == (self.window_length, 1)
                assert returns.shape == (self.window_length, len(sids))
                check_arrays(returns_slice[:, 0], returns[:, my_asset_column])

        # Assertions about the expected slice data are made in the `compute`
        # function of our custom factor above.
        self.run_pipeline(
            Pipeline(columns={'uses_sliced_input': UsesSlicedInput()}),
            self.pipeline_start_date,
            self.pipeline_end_date,
        )
Ejemplo n.º 4
0
    def test_returns(self, seed_value, window_length):

        returns = Returns(window_length=window_length)

        today = datetime64(1, 'ns')
        assets = arange(3)
        out = empty((3, ), dtype=float)

        seed(seed_value)  # Seed so we get deterministic results.
        test_data = abs(randn(window_length, 3))

        # Calculate the expected returns
        expected = (test_data[-1] - test_data[0]) / test_data[0]

        out = empty((3, ), dtype=float)
        returns.compute(today, assets, out, test_data)

        check_allclose(expected, out)
Ejemplo n.º 5
0
    def test_returns(self, seed_value, window_length):

        returns = Returns(window_length=window_length)

        today = datetime64(1, 'ns')
        assets = arange(3)
        out = empty((3,), dtype=float)

        seed(seed_value)  # Seed so we get deterministic results.
        test_data = abs(randn(window_length, 3))

        # Calculate the expected returns
        expected = (test_data[-1] - test_data[0]) / test_data[0]

        out = empty((3,), dtype=float)
        returns.compute(today, assets, out, test_data)

        check_allclose(expected, out)
    def _test_factor_regression_method(self,
                                       returns_length,
                                       regression_length):
        """
        Ensure that `Factor.linear_regression` is consistent with the built-in
        factor `RollingLinearRegressionOfReturns`.
        """
        my_asset = self.my_asset
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        run_pipeline = self.run_pipeline

        returns = Returns(window_length=returns_length, inputs=[self.col])
        returns_slice = returns[my_asset]

        regression = returns.linear_regression(
            target=returns_slice, regression_length=regression_length,
        )
        expected_regression = RollingLinearRegressionOfReturns(
            target=my_asset,
            returns_length=returns_length,
            regression_length=regression_length,
        )

        # This built-in constructs its own Returns factor to use as an input,
        # so the only way to set our own input is to do so after the fact. This
        # should not be done in practice. It is necessary here because we want
        # Returns to use our random data as an input, but by default it is
        # using USEquityPricing.close.
        expected_regression.inputs = [returns, returns_slice]

        columns = {
            'regression': regression,
            'expected_regression': expected_regression,
        }

        results = run_pipeline(Pipeline(columns=columns), start_date, end_date)
        regression_results = results['regression'].unstack()
        expected_regression_results = results['expected_regression'].unstack()

        assert_frame_equal(regression_results, expected_regression_results)
Ejemplo n.º 7
0
    def test_factor_regression_method(self, returns_length, regression_length):
        """
        Ensure that `Factor.linear_regression` is consistent with the built-in
        factor `RollingLinearRegressionOfReturns`.
        """
        my_asset = self.my_asset
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        run_pipeline = self.run_pipeline

        returns = Returns(window_length=returns_length, inputs=[self.col])
        returns_slice = returns[my_asset]

        regression = returns.linear_regression(
            target=returns_slice, regression_length=regression_length,
        )
        expected_regression = RollingLinearRegressionOfReturns(
            target=my_asset,
            returns_length=returns_length,
            regression_length=regression_length,
        )

        # This built-in constructs its own Returns factor to use as an input,
        # so the only way to set our own input is to do so after the fact. This
        # should not be done in practice. It is necessary here because we want
        # Returns to use our random data as an input, but by default it is
        # using USEquityPricing.close.
        expected_regression.inputs = [returns, returns_slice]

        columns = {
            'regression': regression,
            'expected_regression': expected_regression,
        }

        results = run_pipeline(Pipeline(columns=columns), start_date, end_date)
        regression_results = results['regression'].unstack()
        expected_regression_results = results['expected_regression'].unstack()

        assert_frame_equal(regression_results, expected_regression_results)
Ejemplo n.º 8
0
    def test_slice_with_masking(self, unmasked_column, slice_column):
        """
        Test that masking a factor that uses slices as inputs does not mask the
        slice data.
        """
        sids = self.sids
        asset_finder = self.asset_finder
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date

        # Create a filter that masks out all but a single asset.
        unmasked_asset = asset_finder.retrieve_asset(sids[unmasked_column])
        unmasked_asset_only = (AssetID().eq(unmasked_asset.sid))

        # Asset used to create our slice. In the cases where this is different
        # than `unmasked_asset`, our slice should still have non-missing data
        # when used as an input to our custom factor. That is, it should not be
        # masked out.
        slice_asset = asset_finder.retrieve_asset(sids[slice_column])

        returns = Returns(window_length=2, inputs=[self.col])
        returns_slice = returns[slice_asset]

        returns_results = self.run_pipeline(
            Pipeline(columns={'returns': returns}),
            start_date,
            end_date,
        )
        returns_results = returns_results['returns'].unstack()

        class UsesSlicedInput(CustomFactor):
            window_length = 1
            inputs = [returns, returns_slice]

            def compute(self, today, assets, out, returns, returns_slice):
                # Ensure that our mask correctly affects the `returns` input
                # and does not affect the `returns_slice` input.
                assert returns.shape == (1, 1)
                assert returns_slice.shape == (1, 1)
                assert returns[0, 0] == \
                    returns_results.loc[today, unmasked_asset]
                assert returns_slice[0, 0] == \
                    returns_results.loc[today, slice_asset]

        columns = {'masked': UsesSlicedInput(mask=unmasked_asset_only)}

        # Assertions about the expected data are made in the `compute` function
        # of our custom factor above.
        self.run_pipeline(Pipeline(columns=columns), start_date, end_date)
Ejemplo n.º 9
0
    def test_non_existent_asset(self):
        """
        Test that indexing into a term with a non-existent asset raises the
        proper exception.
        """
        my_asset = Asset(0, exchange="TEST")
        returns = Returns(window_length=2, inputs=[self.col])
        returns_slice = returns[my_asset]

        class UsesSlicedInput(CustomFactor):
            window_length = 1
            inputs = [returns_slice]

            def compute(self, today, assets, out, returns_slice):
                pass

        with self.assertRaises(NonExistentAssetInTimeFrame):
            self.run_pipeline(
                Pipeline(columns={'uses_sliced_input': UsesSlicedInput()}),
                self.pipeline_start_date,
                self.pipeline_end_date,
            )
Ejemplo n.º 10
0
    def test_factor_regression_method_two_factors(self, regression_length):
        """
        Tests for `Factor.linear_regression` when passed another 2D factor
        instead of a Slice.
        """
        assets = self.assets
        dates = self.dates
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        start_date_index = self.start_date_index
        end_date_index = self.end_date_index
        num_days = self.num_days
        run_pipeline = self.run_pipeline

        # The order of these is meant to align with the output of `linregress`.
        outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr']

        # Ensure that the `linear_regression` method cannot be called with two
        # 2D factors which have different masks.
        returns_masked_1 = Returns(
            window_length=5, inputs=[self.col], mask=AssetID().eq(1),
        )
        returns_masked_2 = Returns(
            window_length=5, inputs=[self.col], mask=AssetID().eq(2),
        )
        with self.assertRaises(IncompatibleTerms):
            returns_masked_1.linear_regression(
                target=returns_masked_2, regression_length=regression_length,
            )

        returns_5 = Returns(window_length=5, inputs=[self.col])
        returns_10 = Returns(window_length=10, inputs=[self.col])

        regression_factor = returns_5.linear_regression(
            target=returns_10, regression_length=regression_length,
        )

        columns = {
            output: getattr(regression_factor, output)
            for output in outputs
        }
        pipeline = Pipeline(columns=columns)

        results = run_pipeline(pipeline, start_date, end_date)

        output_results = {}
        expected_output_results = {}
        for output in outputs:
            output_results[output] = results[output].unstack()
            expected_output_results[output] = full_like(
                output_results[output], nan,
            )

        # Run a separate pipeline that calculates returns starting
        # (regression_length - 1) days prior to our start date. This is because
        # we need (regression_length - 1) extra days of returns to compute our
        # expected regressions.
        columns = {'returns_5': returns_5, 'returns_10': returns_10}
        results = run_pipeline(
            Pipeline(columns=columns),
            dates[start_date_index - (regression_length - 1)],
            dates[end_date_index],
        )
        returns_5_results = results['returns_5'].unstack()
        returns_10_results = results['returns_10'].unstack()

        # On each day, for each asset, calculate the expected regression
        # results of Y ~ X where Y is the asset's rolling 5 day returns and X
        # is the asset's rolling 10 day returns. Each regression is calculated
        # over `regression_length` days of data.
        for day in range(num_days):
            todays_returns_5 = returns_5_results.iloc[
                day:day + regression_length
            ]
            todays_returns_10 = returns_10_results.iloc[
                day:day + regression_length
            ]
            for asset, asset_returns_5 in todays_returns_5.iteritems():
                asset_column = int(asset) - 1
                asset_returns_10 = todays_returns_10[asset]
                expected_regression_results = linregress(
                    y=asset_returns_5, x=asset_returns_10,
                )
                for i, output in enumerate(outputs):
                    expected_output_results[output][day, asset_column] = \
                        expected_regression_results[i]

        for output in outputs:
            output_result = output_results[output]
            expected_output_result = DataFrame(
                expected_output_results[output],
                index=dates[start_date_index:end_date_index + 1],
                columns=assets,
            )
            assert_frame_equal(output_result, expected_output_result)
Ejemplo n.º 11
0
    def test_factor_correlation_methods_two_factors(self, correlation_length):
        """
        Tests for `Factor.pearsonr` and `Factor.spearmanr` when passed another
        2D factor instead of a Slice.
        """
        assets = self.assets
        dates = self.dates
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        start_date_index = self.start_date_index
        end_date_index = self.end_date_index
        num_days = self.num_days
        run_pipeline = self.run_pipeline

        # Ensure that the correlation methods cannot be called with two 2D
        # factors which have different masks.
        returns_masked_1 = Returns(
            window_length=5, inputs=[self.col], mask=AssetID().eq(1),
        )
        returns_masked_2 = Returns(
            window_length=5, inputs=[self.col], mask=AssetID().eq(2),
        )
        with self.assertRaises(IncompatibleTerms):
            returns_masked_1.pearsonr(
                target=returns_masked_2, correlation_length=correlation_length,
            )
        with self.assertRaises(IncompatibleTerms):
            returns_masked_1.spearmanr(
                target=returns_masked_2, correlation_length=correlation_length,
            )

        returns_5 = Returns(window_length=5, inputs=[self.col])
        returns_10 = Returns(window_length=10, inputs=[self.col])

        pearson_factor = returns_5.pearsonr(
            target=returns_10, correlation_length=correlation_length,
        )
        spearman_factor = returns_5.spearmanr(
            target=returns_10, correlation_length=correlation_length,
        )

        columns = {
            'pearson_factor': pearson_factor,
            'spearman_factor': spearman_factor,
        }
        pipeline = Pipeline(columns=columns)

        results = run_pipeline(pipeline, start_date, end_date)
        pearson_results = results['pearson_factor'].unstack()
        spearman_results = results['spearman_factor'].unstack()

        # Run a separate pipeline that calculates returns starting
        # (correlation_length - 1) days prior to our start date. This is
        # because we need (correlation_length - 1) extra days of returns to
        # compute our expected correlations.
        columns = {'returns_5': returns_5, 'returns_10': returns_10}
        results = run_pipeline(
            Pipeline(columns=columns),
            dates[start_date_index - (correlation_length - 1)],
            dates[end_date_index],
        )
        returns_5_results = results['returns_5'].unstack()
        returns_10_results = results['returns_10'].unstack()

        # On each day, calculate the expected correlation coefficients
        # between each asset's 5 and 10 day rolling returns. Each correlation
        # is calculated over `correlation_length` days.
        expected_pearson_results = full_like(pearson_results, nan)
        expected_spearman_results = full_like(spearman_results, nan)
        for day in range(num_days):
            todays_returns_5 = returns_5_results.iloc[
                day:day + correlation_length
            ]
            todays_returns_10 = returns_10_results.iloc[
                day:day + correlation_length
            ]
            for asset, asset_returns_5 in todays_returns_5.iteritems():
                asset_column = int(asset) - 1
                asset_returns_10 = todays_returns_10[asset]
                expected_pearson_results[day, asset_column] = pearsonr(
                    asset_returns_5, asset_returns_10,
                )[0]
                expected_spearman_results[day, asset_column] = spearmanr(
                    asset_returns_5, asset_returns_10,
                )[0]

        expected_pearson_results = DataFrame(
            data=expected_pearson_results,
            index=dates[start_date_index:end_date_index + 1],
            columns=assets,
        )
        assert_frame_equal(pearson_results, expected_pearson_results)

        expected_spearman_results = DataFrame(
            data=expected_spearman_results,
            index=dates[start_date_index:end_date_index + 1],
            columns=assets,
        )
        assert_frame_equal(spearman_results, expected_spearman_results)
Ejemplo n.º 12
0
    def test_regression_of_returns_factor(self,
                                          returns_length,
                                          regression_length):
        """
        Tests for the built-in factor `RollingLinearRegressionOfReturns`.
        """
        assets = self.assets
        my_asset = self.my_asset
        my_asset_column = self.my_asset_column
        dates = self.dates
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        start_date_index = self.start_date_index
        end_date_index = self.end_date_index
        num_days = self.num_days
        run_pipeline = self.run_pipeline

        # The order of these is meant to align with the output of `linregress`.
        outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr']

        returns = Returns(window_length=returns_length)
        masks = self.cascading_mask, self.alternating_mask, NotSpecified
        expected_mask_results = (
            self.expected_cascading_mask_result,
            self.expected_alternating_mask_result,
            self.expected_no_mask_result,
        )

        for mask, expected_mask in zip(masks, expected_mask_results):
            regression_factor = RollingLinearRegressionOfReturns(
                target=my_asset,
                returns_length=returns_length,
                regression_length=regression_length,
                mask=mask,
            )

            columns = {
                output: getattr(regression_factor, output)
                for output in outputs
            }
            pipeline = Pipeline(columns=columns)
            if mask is not NotSpecified:
                pipeline.add(mask, 'mask')

            results = run_pipeline(pipeline, start_date, end_date)
            if mask is not NotSpecified:
                mask_results = results['mask'].unstack()
                check_arrays(mask_results.values, expected_mask)

            output_results = {}
            expected_output_results = {}
            for output in outputs:
                output_results[output] = results[output].unstack()
                expected_output_results[output] = full_like(
                    output_results[output], nan,
                )

            # Run a separate pipeline that calculates returns starting
            # (regression_length - 1) days prior to our start date. This is
            # because we need (regression_length - 1) extra days of returns to
            # compute our expected regressions.
            results = run_pipeline(
                Pipeline(columns={'returns': returns}),
                dates[start_date_index - (regression_length - 1)],
                dates[end_date_index],
            )
            returns_results = results['returns'].unstack()

            # On each day, calculate the expected regression results for Y ~ X
            # where Y is the asset we are interested in and X is each other
            # asset. Each regression is calculated over `regression_length`
            # days of data.
            for day in range(num_days):
                todays_returns = returns_results.iloc[
                    day:day + regression_length
                ]
                my_asset_returns = todays_returns.iloc[:, my_asset_column]
                for asset, other_asset_returns in todays_returns.iteritems():
                    asset_column = int(asset) - 1
                    expected_regression_results = linregress(
                        y=other_asset_returns, x=my_asset_returns,
                    )
                    for i, output in enumerate(outputs):
                        expected_output_results[output][day, asset_column] = \
                            expected_regression_results[i]

            for output in outputs:
                output_result = output_results[output]
                expected_output_result = DataFrame(
                    where(expected_mask, expected_output_results[output], nan),
                    index=dates[start_date_index:end_date_index + 1],
                    columns=assets,
                )
                assert_frame_equal(output_result, expected_output_result)
Ejemplo n.º 13
0
    def test_correlation_factors(self, returns_length, correlation_length):
        """
        Tests for the built-in factors `RollingPearsonOfReturns` and
        `RollingSpearmanOfReturns`.
        """
        assets = self.assets
        my_asset = self.my_asset
        my_asset_column = self.my_asset_column
        dates = self.dates
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        start_date_index = self.start_date_index
        end_date_index = self.end_date_index
        num_days = self.num_days
        run_pipeline = self.run_pipeline

        returns = Returns(window_length=returns_length)
        masks = (self.cascading_mask, self.alternating_mask, NotSpecified)
        expected_mask_results = (
            self.expected_cascading_mask_result,
            self.expected_alternating_mask_result,
            self.expected_no_mask_result,
        )

        for mask, expected_mask in zip(masks, expected_mask_results):
            pearson_factor = RollingPearsonOfReturns(
                target=my_asset,
                returns_length=returns_length,
                correlation_length=correlation_length,
                mask=mask,
            )
            spearman_factor = RollingSpearmanOfReturns(
                target=my_asset,
                returns_length=returns_length,
                correlation_length=correlation_length,
                mask=mask,
            )

            columns = {
                'pearson_factor': pearson_factor,
                'spearman_factor': spearman_factor,
            }
            pipeline = Pipeline(columns=columns)
            if mask is not NotSpecified:
                pipeline.add(mask, 'mask')

            results = run_pipeline(pipeline, start_date, end_date)
            pearson_results = results['pearson_factor'].unstack()
            spearman_results = results['spearman_factor'].unstack()
            if mask is not NotSpecified:
                mask_results = results['mask'].unstack()
                check_arrays(mask_results.values, expected_mask)

            # Run a separate pipeline that calculates returns starting
            # (correlation_length - 1) days prior to our start date. This is
            # because we need (correlation_length - 1) extra days of returns to
            # compute our expected correlations.
            results = run_pipeline(
                Pipeline(columns={'returns': returns}),
                dates[start_date_index - (correlation_length - 1)],
                dates[end_date_index],
            )
            returns_results = results['returns'].unstack()

            # On each day, calculate the expected correlation coefficients
            # between the asset we are interested in and each other asset. Each
            # correlation is calculated over `correlation_length` days.
            expected_pearson_results = full_like(pearson_results, nan)
            expected_spearman_results = full_like(spearman_results, nan)
            for day in range(num_days):
                todays_returns = returns_results.iloc[
                    day:day + correlation_length
                ]
                my_asset_returns = todays_returns.iloc[:, my_asset_column]
                for asset, other_asset_returns in todays_returns.iteritems():
                    asset_column = int(asset) - 1
                    expected_pearson_results[day, asset_column] = pearsonr(
                        my_asset_returns, other_asset_returns,
                    )[0]
                    expected_spearman_results[day, asset_column] = spearmanr(
                        my_asset_returns, other_asset_returns,
                    )[0]

            expected_pearson_results = DataFrame(
                data=where(expected_mask, expected_pearson_results, nan),
                index=dates[start_date_index:end_date_index + 1],
                columns=assets,
            )
            assert_frame_equal(pearson_results, expected_pearson_results)

            expected_spearman_results = DataFrame(
                data=where(expected_mask, expected_spearman_results, nan),
                index=dates[start_date_index:end_date_index + 1],
                columns=assets,
            )
            assert_frame_equal(spearman_results, expected_spearman_results)
Ejemplo n.º 14
0
    def test_factor_regression_method(self, returns_length, regression_length):
        """
        Ensure that `Factor.linear_regression` is consistent with the built-in
        factor `RollingLinearRegressionOfReturns`.
        """
        my_asset = self.asset_finder.retrieve_asset(self.sids[0])

        returns = Returns(window_length=returns_length, inputs=[self.col])
        returns_slice = returns[my_asset]

        regression = returns.linear_regression(
            target=returns_slice,
            regression_length=regression_length,
        )
        expected_regression = RollingLinearRegressionOfReturns(
            target=my_asset,
            returns_length=returns_length,
            regression_length=regression_length,
        )

        # These built-ins construct their own Returns factor to use as inputs,
        # so the only way to set our own inputs is to do so after the fact.
        # This should not be done in practice. It is necessary here because we
        # want Returns to use our random data as an input, but by default it is
        # using USEquityPricing.close.
        expected_regression.inputs = [returns, returns_slice]

        columns = {
            'regression': regression,
            'expected_regression': expected_regression,
        }

        results = self.run_pipeline(
            Pipeline(columns=columns),
            self.pipeline_start_date,
            self.pipeline_end_date,
        )
        regression_results = results['regression'].unstack()
        expected_regression_results = results['expected_regression'].unstack()

        assert_frame_equal(regression_results, expected_regression_results)

        # Make sure we cannot call the linear regression method on factors or
        # slices of dtype `datetime64[ns]`.
        class DateFactor(CustomFactor):
            window_length = 1
            inputs = []
            dtype = datetime64ns_dtype
            window_safe = True

            def compute(self, today, assets, out):
                pass

        date_factor = DateFactor()
        date_factor_slice = date_factor[my_asset]

        with self.assertRaises(TypeError):
            date_factor.linear_regression(
                target=returns_slice,
                regression_length=regression_length,
            )
        with self.assertRaises(TypeError):
            returns.linear_regression(
                target=date_factor_slice,
                regression_length=regression_length,
            )
Ejemplo n.º 15
0
    def test_factor_regression_method(self, returns_length, regression_length):
        """
        Ensure that `Factor.linear_regression` is consistent with the built-in
        factor `RollingLinearRegressionOfReturns`.
        """
        my_asset = self.asset_finder.retrieve_asset(self.sids[0])

        returns = Returns(window_length=returns_length, inputs=[self.col])
        returns_slice = returns[my_asset]

        regression = returns.linear_regression(
            target=returns_slice, regression_length=regression_length,
        )
        expected_regression = RollingLinearRegressionOfReturns(
            target=my_asset,
            returns_length=returns_length,
            regression_length=regression_length,
        )

        # These built-ins construct their own Returns factor to use as inputs,
        # so the only way to set our own inputs is to do so after the fact.
        # This should not be done in practice. It is necessary here because we
        # want Returns to use our random data as an input, but by default it is
        # using USEquityPricing.close.
        expected_regression.inputs = [returns, returns_slice]

        columns = {
            'regression': regression,
            'expected_regression': expected_regression,
        }

        results = self.run_pipeline(
            Pipeline(columns=columns),
            self.pipeline_start_date,
            self.pipeline_end_date,
        )
        regression_results = results['regression'].unstack()
        expected_regression_results = results['expected_regression'].unstack()

        assert_frame_equal(regression_results, expected_regression_results)

        # Make sure we cannot call the linear regression method on factors or
        # slices of dtype `datetime64[ns]`.
        class DateFactor(CustomFactor):
            window_length = 1
            inputs = []
            dtype = datetime64ns_dtype
            window_safe = True

            def compute(self, today, assets, out):
                pass

        date_factor = DateFactor()
        date_factor_slice = date_factor[my_asset]

        with self.assertRaises(TypeError):
            date_factor.linear_regression(
                target=returns_slice, regression_length=regression_length,
            )
        with self.assertRaises(TypeError):
            returns.linear_regression(
                target=date_factor_slice, regression_length=regression_length,
            )