def main(args):
    global IMG_SIZE

    IMG_SIZE = (args.img_size, args.img_size)

    model = ResnetEncoder(arch=args.arch, pooling=args.pooling)
    model = model.eval()
    model, device = UtilsFactory.prepare_model(model)

    images_df = pd.read_csv(args.in_csv)
    images_df = images_df.reset_index().drop("index", axis=1)
    images_df = list(images_df.to_dict("index").values())

    open_fn = ImageReader(row_key=args.img_col,
                          dict_key="image",
                          datapath=args.datapath)

    dataloader = UtilsFactory.create_loader(images_df,
                                            open_fn,
                                            batch_size=args.batch_size,
                                            workers=args.n_workers,
                                            dict_transform=dict_transformer)

    features = []
    dataloader = tqdm(dataloader) if args.verbose else dataloader
    with torch.no_grad():
        for batch in dataloader:
            features_ = model(batch["image"].to(device))
            features_ = features_.cpu().detach().numpy()
            features.append(features_)

    features = np.concatenate(features, axis=0)
    np.save(args.out_npy, features)
Ejemplo n.º 2
0
    def _init(self,
              critics,
              min_action,
              max_action,
              action_noise_std=0.2,
              action_noise_clip=0.5,
              **kwargs):
        super()._init(**kwargs)

        self.min_action = min_action
        self.max_action = max_action
        self.action_noise_std = action_noise_std
        self.action_noise_clip = action_noise_clip

        critics = [x.to(self._device) for x in critics]
        critics_optimizer = [
            UtilsFactory.create_optimizer(x, **self.critic_optimizer_params)
            for x in critics
        ]
        critics_scheduler = [
            UtilsFactory.create_scheduler(x, **self.critic_scheduler_params)
            for x in critics_optimizer
        ]
        target_critics = [copy.deepcopy(x).to(self._device) for x in critics]

        self.critics = [self.critic] + critics
        self.critics_optimizer = [self.critic_optimizer] + critics_optimizer
        self.critics_scheduler = [self.critic_scheduler] + critics_scheduler
        self.target_critics = [self.target_critic] + target_critics
Ejemplo n.º 3
0
def main(args):
    model = models.__dict__[args.arch](pretrained=True)
    model = model.eval()
    model, device = UtilsFactory.prepare_model(model)

    labels = json.loads(open(args.labels).read())

    i2k = Images2Keywords(model, args.n_keywords, labels)

    images_df = pd.read_csv(args.in_csv)
    images_df = images_df.reset_index().drop("index", axis=1)
    images_df = list(images_df.to_dict("index").values())

    open_fn = ImageReader(row_key=args.img_col,
                          dict_key="image",
                          datapath=args.datapath)

    dataloader = UtilsFactory.create_loader(images_df,
                                            open_fn,
                                            batch_size=args.batch_size,
                                            workers=args.n_workers,
                                            dict_transform=dict_transformer)

    keywords = []
    dataloader = tqdm(dataloader) if args.verbose else dataloader
    with torch.no_grad():
        for batch in dataloader:
            keywords_batch = i2k(batch["image"].to(device))
            keywords += keywords_batch

    input_csv = pd.read_csv(args.in_csv)
    input_csv[args.keywords_col] = keywords
    input_csv.to_csv(args.out_csv, index=False)
Ejemplo n.º 4
0
def to_batch_metrics(*, state, metric_key):
    metric = state.get_key(metric_key)
    if isinstance(metric, dict):
        for key, value in metric.items():
            state.batch_metrics[f"{metric_key}_{key}"] = \
                UtilsFactory.get_val_from_metric(value)
    else:
        state.batch_metrics[f"{metric_key}"] = \
            UtilsFactory.get_val_from_metric(metric)
Ejemplo n.º 5
0
    def _init(self, critic_v, **kwargs):
        super()._init(**kwargs)

        self.critic_v = critic_v.to(self._device)
        self.critic_v_optimizer = UtilsFactory.create_optimizer(
            self.critic_v, **self.critic_optimizer_params)
        self.critic_v_scheduler = UtilsFactory.create_scheduler(
            self.critic_v_optimizer, **self.critic_scheduler_params)
        self.target_critic_v = copy.deepcopy(critic_v).to(self._device)

        self.num_atoms = self.critic.n_atoms
        tau_min = 1 / (2 * self.num_atoms)
        tau_max = 1 - tau_min
        tau = torch.linspace(start=tau_min, end=tau_max, steps=self.num_atoms)
        self.tau = self.to_tensor(tau)
Ejemplo n.º 6
0
 def _init(self):
     """
     Inner method for children's classes for model specific initialization.
     As baseline, checks device support and puts model on it.
     :return:
     """
     self.model, self.device = UtilsFactory.prepare_model(self.model)
Ejemplo n.º 7
0
def main(args):
    images_df = pd.read_csv(args.in_csv)
    images_df = images_df.reset_index().drop("index", axis=1)
    images_df = list(images_df.to_dict("index").values())

    if args.fasttext_model is not None:
        encode_fn = create_fasttext_encode_fn(args.fasttext_model,
                                              normalize=args.normalize)
    elif args.w2v_model is not None:
        encode_fn = create_gensim_encode_fn(args.w2v_model,
                                            sep=args.txt_sep,
                                            normalize=args.normalize)
    else:
        raise NotImplementedError

    open_fn = TextReader(row_key=args.txt_col,
                         dict_key="txt",
                         encode_fn=encode_fn)

    dataloader = UtilsFactory.create_loader(images_df,
                                            open_fn,
                                            batch_size=args.batch_size,
                                            workers=args.n_workers)

    features = []
    dataloader = tqdm(dataloader) if args.verbose else dataloader
    for batch in dataloader:
        features_ = batch["txt"]
        features.append(features_)

    features = np.concatenate(features, axis=0)
    np.save(args.out_npy, features)
Ejemplo n.º 8
0
 def save(self):
     if self.epoch % self.save_period == 0:
         checkpoint = self.algorithm.prepare_checkpoint()
         checkpoint["epoch"] = self.epoch
         filename = UtilsFactory.save_checkpoint(logdir=self.logdir,
                                                 checkpoint=checkpoint,
                                                 suffix=str(self.epoch))
         print("Checkpoint saved to: %s" % filename)
Ejemplo n.º 9
0
    def on_batch_end(self, state):
        lm = state.loader_mode
        if lm not in self.loggers:
            self.loggers[lm] = UtilsFactory.create_tflogger(logdir=self.logdir,
                                                            name=lm)

        for key, value in state.batch_metrics.items():
            self.loggers[lm].add_scalar(key, value, state.step)
Ejemplo n.º 10
0
    def load_checkpoint(*, filename, state):
        if os.path.isfile(filename):
            print("=> loading checkpoint \"{}\"".format(filename))
            checkpoint = UtilsFactory.load_checkpoint(filename)

            state.epoch = checkpoint["epoch"]
            state.best_metrics = checkpoint["best_metrics"]

            UtilsFactory.unpack_checkpoint(checkpoint,
                                           model=state.model,
                                           criterion=state._criterion,
                                           optimizer=state._optimizer,
                                           scheduler=state._scheduler)

            print("loaded checkpoint \"{}\" (epoch {})".format(
                filename, checkpoint["epoch"]))
        else:
            raise Exception("no checkpoint found at \"{}\"".format(filename))
Ejemplo n.º 11
0
    def _init(self,
              critic_q1,
              critic_q2,
              reward_scale=1.0,
              use_regularization=False,
              mu_and_sigma_reg=1e-3,
              policy_grad_estimator="reparametrization_trick",
              **kwargs):
        """
        Parameters
        ----------
        reward_scale: float,
            THE MOST IMPORTANT HYPERPARAMETER which controls the ratio
            between maximizing rewards and acting as randomly as possible
        use_regularization: bool,
            whether to use l2 regularization on policy network outputs,
            regularization can not be used with RealNVPActor
        mu_and_sigma_reg: float,
            coefficient for l2 regularization on mu and log_sigma
        policy_grad_estimator: str,
            "reinforce": may be used with arbitrary explicit policy
            "reparametrization_trick": may be used with reparametrizable
            policy, e.g. Gaussian, normalizing flow (Real NVP).
        """
        super()._init(**kwargs)

        self.critic_q1 = critic_q1.to(self._device)
        self.critic_q2 = critic_q2.to(self._device)

        self.critic_q1_optimizer = UtilsFactory.create_optimizer(
            self.critic_q1, **self.critic_optimizer_params)
        self.critic_q2_optimizer = UtilsFactory.create_optimizer(
            self.critic_q2, **self.critic_optimizer_params)

        self.critic_q1_scheduler = UtilsFactory.create_scheduler(
            self.critic_q1_optimizer, **self.critic_scheduler_params)
        self.critic_q2_scheduler = UtilsFactory.create_scheduler(
            self.critic_q2_optimizer, **self.critic_scheduler_params)

        self.reward_scale = reward_scale
        self.use_regularization = use_regularization
        self.mu_sigma_reg = mu_and_sigma_reg
        self.policy_grad_estimator = policy_grad_estimator
Ejemplo n.º 12
0
    def _init(self,
              critic2,
              min_action,
              max_action,
              action_noise_std=0.2,
              action_noise_clip=0.5,
              **kwargs):
        super()._init(**kwargs)

        self.min_action = min_action
        self.max_action = max_action
        self.action_noise_std = action_noise_std
        self.action_noise_clip = action_noise_clip

        self.critic2 = critic2.to(self._device)
        self.critic2_optimizer = UtilsFactory.create_optimizer(
            self.critic2, **self.critic_optimizer_params)
        self.critic2_scheduler = UtilsFactory.create_scheduler(
            self.critic_optimizer, **self.critic_scheduler_params)
        self.target_critic2 = copy.deepcopy(critic2).to(self._device)
Ejemplo n.º 13
0
 def load_actor_weights(self):
     if self.resume is not None:
         checkpoint = UtilsFactory.load_checkpoint(self.resume)
         weights = checkpoint[f"actor_state_dict"]
         self.actor.load_state_dict(weights)
     elif self.redis_server is not None:
         weights = deserialize(
             self.redis_server.get(f"{self.redis_prefix}_actor_weights"))
         weights = {k: self.to_tensor(v) for k, v in weights.items()}
         self.actor.load_state_dict(weights)
     else:
         raise NotImplementedError
     self.actor.eval()
Ejemplo n.º 14
0
 def save_checkpoint(self, logdir, checkpoint, is_best, save_n_best=5):
     suffix = f"{checkpoint['stage']}.{checkpoint['epoch']}"
     filepath = UtilsFactory.save_checkpoint(logdir=logdir,
                                             checkpoint=checkpoint,
                                             is_best=is_best,
                                             suffix=suffix)
     self.top_best_metrics.append(
         (filepath, checkpoint["valid_metrics"][self.main_metric]))
     self.top_best_metrics = sorted(self.top_best_metrics,
                                    key=lambda x: x[1],
                                    reverse=not self.minimize)
     if len(self.top_best_metrics) > save_n_best:
         last_item = self.top_best_metrics.pop(-1)
         last_filepath = last_item[0]
         os.remove(last_filepath)
Ejemplo n.º 15
0
    def load_checkpoint(self, filepath, load_optimizer=True):
        checkpoint = UtilsFactory.load_checkpoint(filepath)
        for key in ["actor", "critic"]:
            value_l = getattr(self, key, None)
            if value_l is not None:
                value_r = checkpoint[f"{key}_state_dict"]
                value_l.load_state_dict(value_r)

            if load_optimizer:
                for key2 in ["optimizer", "scheduler"]:
                    key2 = f"{key}_{key2}"
                    value_l = getattr(self, key2, None)
                    if value_l is not None:
                        value_r = checkpoint[f"{key2}_state_dict"]
                        value_l.load_state_dict(value_r)
Ejemplo n.º 16
0
    def load_checkpoint(self, filepath, load_optimizer=True):
        super().load_checkpoint(filepath, load_optimizer)

        checkpoint = UtilsFactory.load_checkpoint(filepath)
        key = "critics"
        for i in range(len(self.critics)):
            value_l = getattr(self, key, None)
            value_l = value_l[i] if value_l is not None else None
            if value_l is not None:
                value_r = checkpoint[f"{key}{i}_state_dict"]
                value_l.load_state_dict(value_r)
            if load_optimizer:
                for key2 in ["optimizer", "scheduler"]:
                    key2 = f"{key}_{key2}"
                    value_l = getattr(self, key2, None)
                    if value_l is not None:
                        value_r = checkpoint[f"{key2}_state_dict"]
                        value_l.load_state_dict(value_r)
Ejemplo n.º 17
0
 def __init__(self,
              grad_clip_params: Dict = None,
              fp16_grad_scale: float = 128.0,
              accumulation_steps: int = 1,
              optimizer_key: str = None,
              loss_key: str = None):
     """
     @TODO: docs
     """
     grad_clip_params = grad_clip_params or {}
     self.grad_clip_fn = UtilsFactory.create_grad_clip_fn(
         **grad_clip_params)
     self.fp16 = False
     self.fp16_grad_scale = fp16_grad_scale
     self.accumulation_steps = accumulation_steps
     self.optimizer_key = optimizer_key
     self.loss_key = loss_key
     self.optimizer_wd = 0
     self.accumulation_counter = 0
Ejemplo n.º 18
0
 def save_checkpoint(
         self, logdir, checkpoint, is_best,
         save_n_best=5, main_metric="loss_main", minimize_metric=True):
     suffix = f"{checkpoint['stage']}.{checkpoint['epoch']}"
     filepath = UtilsFactory.save_checkpoint(
         logdir=logdir,
         checkpoint=checkpoint,
         is_best=is_best,
         suffix=suffix)
     checkpoint_metric = checkpoint["valid_metrics"].get(main_metric, None)
     checkpoint_metric = checkpoint_metric or checkpoint.get("epoch", -1)
     self.top_best_metrics.append((filepath, checkpoint_metric))
     self.top_best_metrics = sorted(
         self.top_best_metrics,
         key=lambda x: x[1],
         reverse=not minimize_metric)
     if len(self.top_best_metrics) > save_n_best:
         last_item = self.top_best_metrics.pop(-1)
         last_filepath = last_item[0]
         os.remove(last_filepath)
Ejemplo n.º 19
0
    def on_epoch_end_pre(state):
        if state.mode == "infer":
            return

        best_metrics, valid_metrics, is_best = \
            UtilsFactory.process_epoch_metrics(
                state.epoch_metrics,
                state.best_metrics,
                valid_loader=state.valid_loader,
                main_metric=state.main_metric,
                minimize=state.minimize_metric)
        valid_metrics = {
            key: value
            for key, value in valid_metrics.items()
            if isinstance(value, float)
        }
        state.best_metrics = {
            key: value
            for key, value in best_metrics.items() if isinstance(value, float)
        }
        state.valid_metrics = valid_metrics
        state.is_best_epoch = is_best
Ejemplo n.º 20
0
def prepare_model(config):
    return UtilsFactory.create_model(config=config,
                                     available_networks=NETWORKS)
Ejemplo n.º 21
0
 def pack_checkpoint(self, **kwargs):
     return UtilsFactory.pack_checkpoint(**kwargs)
Ejemplo n.º 22
0
 def on_loader_end_pre(state):
     lm = state.loader_mode
     state.epoch_metrics[lm] = {
         key: UtilsFactory.get_val_from_metric(value)
         for key, value in state.epoch_metrics[lm].items()
     }
Ejemplo n.º 23
0
 def on_loader_start(self, state):
     lm = state.loader_mode
     if lm not in self.loggers:
         self.loggers[lm] = UtilsFactory.create_tflogger(logdir=self.logdir,
                                                         name=lm)
Ejemplo n.º 24
0
    def __init__(self,
                 actor,
                 critic,
                 gamma,
                 n_step,
                 actor_optimizer_params,
                 critic_optimizer_params,
                 actor_grad_clip=None,
                 critic_grad_clip=None,
                 actor_loss_params=None,
                 critic_loss_params=None,
                 actor_scheduler_params=None,
                 critic_scheduler_params=None,
                 resume=None,
                 load_optimizer=True,
                 actor_tau=1.0,
                 critic_tau=1.0,
                 **kwargs):
        self._device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

        self.actor = actor.to(self._device)
        self.critic = critic.to(self._device)

        self.target_actor = copy.deepcopy(actor).to(self._device)
        self.target_critic = copy.deepcopy(critic).to(self._device)

        self.actor_optimizer = UtilsFactory.create_optimizer(
            self.actor, **actor_optimizer_params)
        self.critic_optimizer = UtilsFactory.create_optimizer(
            self.critic, **critic_optimizer_params)

        self.actor_optimizer_params = actor_optimizer_params
        self.critic_optimizer_params = critic_optimizer_params

        self.actor_scheduler = UtilsFactory.create_scheduler(
            self.actor_optimizer, **actor_scheduler_params)
        self.critic_scheduler = UtilsFactory.create_scheduler(
            self.critic_optimizer, **critic_scheduler_params)

        self.actor_scheduler_params = actor_scheduler_params
        self.critic_scheduler_params = critic_scheduler_params

        self.n_step = n_step
        self.gamma = gamma

        self.actor_grad_clip_params = None
        self.critic_grad_clip_params = None

        if actor_grad_clip is not None:
            # clip_grad_value_ or clip_grad_norm_
            func = actor_grad_clip.pop("func", "clip_grad_value_")
            func = torch.nn.utils.__dict__[func]
            actor_grad_clip_params = copy.deepcopy(actor_grad_clip)
            actor_grad_clip = lambda parameters: func(parameters, **
                                                      actor_grad_clip_params)
            self.actor_grad_clip_params = actor_grad_clip_params

        if critic_grad_clip is not None:
            # clip_grad_value_ or clip_grad_norm_
            func = critic_grad_clip.pop("func", "clip_grad_value_")
            func = torch.nn.utils.__dict__[func]
            critic_grad_clip_params = copy.deepcopy(critic_grad_clip)
            critic_grad_clip = lambda parameters: func(
                parameters, **critic_grad_clip_params)
            self.critic_grad_clip_params = critic_grad_clip_params

        self.actor_grad_clip = actor_grad_clip
        self.critic_grad_clip = critic_grad_clip

        self.actor_tau = actor_tau
        self.critic_tau = critic_tau

        self.actor_criterion = UtilsFactory.create_criterion(
            **(actor_loss_params or {}))
        self.critic_criterion = UtilsFactory.create_criterion(
            **(critic_loss_params or {}))

        self.actor_loss_params = actor_loss_params
        self.critic_loss_params = critic_loss_params

        self._init(**kwargs)

        if resume is not None:
            self.load_checkpoint(resume, load_optimizer=load_optimizer)
Ejemplo n.º 25
0
        augment_fn=lambda x: \
            torch.from_numpy(x.copy().astype(np.float32) / 256.).unsqueeze_(0).float()),
    Augmentor(
        dict_key="targets",
        augment_fn=lambda x: \
            torch.from_numpy(x.copy()).unsqueeze_(0).float()),
]

train_data_transform = transforms.Compose(augmentations + transformations)
valid_data_transform = transforms.Compose(transformations)

open_fn = lambda x: {"features": x[0], "targets": x[1]}

train_loader = UtilsFactory.create_loader(train_data,
                                          open_fn=open_fn,
                                          dict_transform=train_data_transform,
                                          batch_size=bs,
                                          workers=n_workers,
                                          shuffle=True)

valid_loader = UtilsFactory.create_loader(valid_data,
                                          open_fn=open_fn,
                                          dict_transform=valid_data_transform,
                                          batch_size=bs,
                                          workers=n_workers,
                                          shuffle=False)

loaders = collections.OrderedDict()
loaders["train"] = train_loader
loaders["valid"] = valid_loader

# Model & Criterion
Ejemplo n.º 26
0
    def train(self,
              *,
              datasource: AbstractDataSource,
              args: Namespace,
              stages_config: Dict[str, Dict] = None,
              verbose: bool = False):
        """
        Main method for training DL models.

        :param datasource: AbstractDataSource instance
        :param args: console args
        :param stages_config: config
        :param verbose: verbose flag
        """

        stages_state_params = stages_config.pop("state_params", {})
        stages_data_params = stages_config.pop("data_params", {})
        stages_callbacks_params = stages_config.pop("callbacks_params", {})
        stages_criterion_params = stages_config.pop("criterion_params", {})
        stages_optimizer_params = stages_config.pop("optimizer_params", {})
        stages_scheduler_params = stages_config.pop("scheduler_params", {})
        loaders = None

        for stage, config in stages_config.items():
            self.stage = stage

            args = UtilsFactory.prepare_stage_args(args=args,
                                                   stage_config=config)
            pprint(args)

            data_params = merge_dicts(stages_data_params,
                                      config.get("data_params", {}))
            reload_loaders = data_params.get("reload_loaders", True)

            if loaders is None or reload_loaders:
                loaders = datasource.prepare_loaders(args=args,
                                                     stage=stage,
                                                     **data_params)

            state_params = merge_dicts(stages_state_params,
                                       config.get("state_params", {}))
            callbacks_params = merge_dicts(stages_callbacks_params,
                                           config.get("callbacks_params", {}))
            config["criterion_params"] = merge_dicts(
                stages_criterion_params, config.get("criterion_params", {}))
            config["optimizer_params"] = merge_dicts(
                stages_optimizer_params, config.get("optimizer_params", {}))
            config["scheduler_params"] = merge_dicts(
                stages_scheduler_params, config.get("scheduler_params", {}))

            callbacks = self.prepare_callbacks(
                callbacks_params=callbacks_params,
                args=args,
                mode="train",
                stage=stage)
            pprint(loaders)
            pprint(callbacks)

            self.run_stage_init(callbacks=callbacks)
            self.criterion, self.optimizer, self.scheduler = \
                UtilsFactory.create_model_stuff(
                    model=self.model, config=config)

            start_epoch = 0 if self.state is None else self.state.epoch + 1
            self.train_stage(loaders=loaders,
                             callbacks=callbacks,
                             state_params=state_params,
                             epochs=args.epochs,
                             start_epoch=start_epoch,
                             verbose=verbose,
                             logdir=args.logdir)
Ejemplo n.º 27
0
 def on_loader_start(self, state):
     if self.writer is None:
         self.writer = UtilsFactory.create_tflogger(
             logdir=self.logdir, name="group")
Ejemplo n.º 28
0
 def prepare_stage_args(*, args, stage_config):
     return UtilsFactory.prepare_stage_args(args=args,
                                            stage_config=stage_config)
Ejemplo n.º 29
0
 def create_model_stuff(*, model, config):
     return UtilsFactory.create_model_stuff(model=model, config=config)