Ejemplo n.º 1
0
 def test_categorize_existing_dir(self):
     test_dir = "testDir"
     categorize(test_dir, "testDirDest")
     generate_files(test_dir, "newAudioFile", extension="mp3", numFiles=2)
     generate_files(test_dir, "newNotes", numFiles=2)
     generate_files(test_dir, "newPic", extension="png", numFiles=2)
     generate_files(test_dir, "newClips", extension="avi", numFiles=2)
     categorize(test_dir, "testDirDest")
     audioPath = os.path.join("testDirDest", "media", "images")
     num_files = len(os.listdir(audioPath))
     self.assertEqual(num_files, 4)
Ejemplo n.º 2
0
 def test_categorize_duplicates(self):
     test_dir = "testDir"
     categorize(test_dir, "testDirDest")
     generate_files(test_dir, "audioFile", extension="mp3", numFiles=2)
     generate_files(test_dir, "notes", numFiles=2)
     generate_files(test_dir, "pic", extension="png", numFiles=2)
     generate_files(test_dir, "clips", extension="avi", numFiles=2)
     files_before = os.listdir("testDir")
     categorize(test_dir, "testDirDest")
     files_after = os.listdir("testDir")
     # duplicates should note overwrite
     self.assertEqual(files_before, files_after)
Ejemplo n.º 3
0
def calc_carbon():
    emission_factors = pd.read_excel(excel_file, sheet_name=5)
    # emission_factors = emission_factors.pivot_table(index = ['Food'])
    food_input = categorize()

    emission_numbers = dict(
        (emission_factors['Food'][el],
         (emission_factors['Emissions'][el], emission_factors['Land Use'][el],
          emission_factors['Carbon Oppurtunity Costs'][el]))
        for el in range(emission_factors.shape[0]))

    food_input['Carbon Emissions'] = ''
    food_input['Land Use'] = ''
    food_input['Carbon Oppurtunity Costs'] = ''

    for i in range(food_input.shape[0]):
        food_input.at[i, 'Carbon Emissions'] = (food_input.at[i, 'Units'])* \
        (emission_numbers.get(food_input.at[i, 'Carbon Category'])[0]/1000)

        food_input.at[i, 'Land Use'] = (food_input.at[i, 'Units'])* \
        (emission_numbers.get(food_input.at[i, 'Carbon Category'])[1]/10000)

        food_input.at[i, 'Carbon Oppurtunity Costs'] = (food_input.at[i, 'Units'])* \
        (emission_numbers.get(food_input.at[i, 'Carbon Category'])[2]/1000)

    return food_input
Ejemplo n.º 4
0
def categorize_info(ips_addr: str=DEFAULT_IPS_ADDRESS, fields: list=DEFAULT_FIELDS,
        special_key: str=DEFAULT_SPECIAL_KEY, info_save_addr: str=DEFAULT_INFORMATION_SAVE_ADDRESS):
    try:
        ips_list = list()
        info_list = list()
        with open(file=ips_addr, mode='r') as f:
            ips_list = f.readlines()
            f.close()
        for ip in ips_list:
            fixed_ip = ip.strip()
            info = get_information(ip=fixed_ip, fields=fields)
            if info["status"] == "success":
                print(f"{fixed_ip} :: SUCCESS *")
                info_list.append(info)
            else:
                print(f"{fixed_ip} :: FAILED ! => {info['message']}")
        with open(file=info_save_addr, mode="w") as f:
            json.dump(fp=f, obj=info_list, indent=4)
            f.close()
            print(f"** Information saved in: {info_save_addr} **")
        result = categorize(info_list=info_list, special_key=special_key)
        return(result)

    except Exception as error:
        result = {"error": error}
        return(result)
Ejemplo n.º 5
0
currentDirectory = os.getcwd()
data_temp = pd.read_csv(currentDirectory+"/Data_for_UCI_named.csv") 
data = data_temp.iloc[:, :].values

classic = 0 # 1 - classic version of building decision tree 0 - my version of building tree
no_trees = 1
size = 5
treshold = 0.3
print(len(data))

#######
training_data = make_training_data(data,no_trees,size)
test = data[(size*no_trees):]
forest = build_forest(training_data,treshold,no_trees, classic)
q = categorize(test, forest)
print (q)


######

notrees_test = [1,2,5,10,15,25,50,100,200,400]
treshold_test = [-0.5,-0.3,-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
size_test = [1,2,3,5,10,20,50]

repetition = 5
efficiency = np.empty((len(test_no),repetition))

training_data = make_training_data(data,test_no[-1],size)
test = data[(size*test_no[-1]):]
Ejemplo n.º 6
0
                if instructions == 0:
                    print("Unable to disassemble executable")
                    exit(1)

                get_gadgets.GetAllGadgets(instructions, code.data(),
                                          EntryAddress,
                                          get_gadgets.SpecialInstructions,
                                          gadgetLength)

    if args.gadgets == True:
        print_pretty.print_pretty(get_gadgets.allGadgets)

    TwoInstGadgets = categorize.getLNGadgets(get_gadgets.allGadgets, 2)

    general.ALLGADGETS = categorize.categorize(TwoInstGadgets)

    # execve() ROP Shellcode
    if args.exploitType == "execve":
        execveChain.execveROPChain(general.ALLGADGETS, vulnExecutable)

    # mprotect() ROP Shellcode + execve() traditional Shellcode
    elif args.exploitType == "mprotect":
        mprotectChain.mprotectROPChain(general.ALLGADGETS, vulnExecutable)

    # BindShell using ROP Shellcode
    elif args.exploitType == "bindshell":
        bindshellChain.bindshellROPChain(general.ALLGADGETS, vulnExecutable)

    # If we don't have the exploit
    else:
Ejemplo n.º 7
0
Archivo: main.py Proyecto: YuKnight/src
                #     print("0x%x:\t%s\t%s" %(i.address, i.mnemonic,i.op_str))
                #print("Looking for c3s")
                get_gadgets.GetAllGadgets(instructions, code.data(),
                                          EntryAddress,
                                          get_gadgets.SpecialInstructions,
                                          gadgetLength)

    print("Gadgets that were found:")
    print_pretty.print_pretty(get_gadgets.allGadgets)
    print(len(get_gadgets.SpecialInstructions))

    # For now, get all gadgets with just 1 Instruction in it(excluding ret).
    Temp = categorize.getLNGadgets(get_gadgets.allGadgets, 2)

    TwoInstGadgets = list()

    for x in Temp:
        if x not in TwoInstGadgets:
            TwoInstGadgets.append(x)

    # print_pretty.print_pretty(TwoInstGadgets)

    UniqueGadgetsList = categorize.categorize(TwoInstGadgets)

    for l in UniqueGadgetsList:
        print_pretty.print_pretty(l)

    # # A tuple is returned by chain.execveROPChain()
    # # It also creates a file named execvePythonPayload which has output like ROPgadget
    # payload = chain.execveROPChain(general.ALLGADGETS, vulnExecutable)
Ejemplo n.º 8
0
 def test_categorize(self):
     categorize("testDir", "testDirDest")
     self.assertTrue(os.path.exists(os.path.join("testDirDest", "media", "images")))
Ejemplo n.º 9
0
 def test_categorize_nested(self):
     categorize(self.testPath, self.testPath, config_dict=self.config)
     path = os.path.join(self.testPath, *["dir"+str(i) for i in range(5, -1, -1)])
     self.assertTrue(os.path.exists(path))
     self.assertTrue(os.path.isdir(path))
Ejemplo n.º 10
0
def fatalFlaw(game, moves, threeGroups=False):
    human_rollout, rewards, humanscores = getHumanRollout(game,
                                                          moves,
                                                          getscore=True)
    # #printActions(game, getActions(game, qvalues))
    print()
    print()
    print("Your Actions:")
    printActions(game, [s[1] for s in human_rollout[:-1]])
    finalScore = getToComeScore(rewards, 0)
    print("Your score: ", finalScore)
    print()

    maxAction = None
    maxDiff = 0
    maxIndex = 0
    index = 0
    Bhscore = 0
    Brscore = 0
    BrRollout = None
    BrActions = None
    group = None
    assert humanscores[-1] == finalScore
    for state, human_action in human_rollout:
        sofar = getSoFarScore(rewards, index)
        if human_action == None:
            break
        #pdb.set_trace()
        #rhscore, hractions = getActions(state.getSuccessor(human_action)[0], 0, 50000)
        s = m2.State()
        s.gs = state
        rscore, ractions, NA, rstates, rollouts, scores = getActions(
            state, 1, NUM_ITERS, allRolloutsAdd=True)
        humanOptimalRollout = [
            roll for roll in rollouts if roll[0] == human_action
        ][0]
        humanNode = [x for x, y in NA if y == human_action][0]
        rhscore = max(humanNode.reward, finalScore)

        if finalScore <= rscore:
            print(index, "| BestAction", ractions[0], "~best score: ",
                  formatScore(rscore), "| humanAction", human_action,
                  "~best score: ", formatScore(rhscore))
        else:
            rscore = finalScore
            ractions = [s[1] for s in human_rollout[index:]]
            print("uh oh, human's score is better than our best estimate!!!")
            print(index, "| BestAction", ractions[0], "~best score: ",
                  formatScore(rscore), "| humanAction", human_action,
                  "~best score: ", formatScore(rhscore))
        diff = rscore - rhscore
        if human_action != ractions[0]:
            mType = categorize(state, human_action, ractions,
                               humanOptimalRollout)
            print(mType)
            group = groupMistake(mType)
            print(group)
        if (diff > maxDiff and human_action != ractions[0]
                and not threeGroups) or (diff > maxDiff
                                         and human_action != ractions[0]
                                         and group):
            maxDiff = diff
            maxAction = ractions[0]
            maxIndex = index
            Bhscore = rhscore
            Brscore = rscore
            BrRollout = rstates
            BrActions = ractions
            maxGroup = group
            maxType = mType
        index += 1
    if not BrActions:
        return None, None, None, None, None, None, None, None, None
    BrActions = BrActions + [None]
    state, human_action = human_rollout[maxIndex]
    print("Fatal Flaw state")
    state.printBoard()
    print()
    print("Your actions: ")
    printActions(game, [s[1] for s in human_rollout])
    print("There was a fatal flaw at action index", maxIndex)
    print()
    print("You took: ", human_action, "~best score of", Bhscore)
    print("Your actions starting at fatal flaw:")
    printActions(state, [s[1] for s in human_rollout[maxIndex:-1]])
    print()
    print("You should have taken: ", maxAction, "with a ~best score of ",
          Brscore)
    print(
        "Optimal actions starting at fatal flaw, starting with corrected action:"
    )
    printActions(state, BrActions)
    print("You could have gotten", Brscore)

    print("Starting Fatal Flaw state")

    state.printBoard()

    k2Agent = MaxAgent(depth=2)
    valuefn = lambda s: k2Agent.value(s)[0]
    hR = [x[0] for x in human_rollout][maxIndex:]
    hS = [x.cash for x in hR]
    rS = [x.cash for x in BrRollout]

    f = open('store.pckl', 'wb')
    pickle.dump(
        (BrRollout, rS, hR, hS, BrActions, [x[1] for x in human_rollout
                                            ][maxIndex:]), f)
    f.close()
    #print_max_diff_vals(BrRollout, hR, valuefn, rS, hS)
    #explain(BrRollout, rS)
    return BrRollout, rS, hR, hS, BrActions, [
        x[1] for x in human_rollout
    ][maxIndex:], maxIndex, maxGroup, maxType
Ejemplo n.º 11
0
    bucket_name=bucket_name,
    local_dir_path='/tmp',
    separator='|',
    logger=logger)


logger.info('Starting pile_up logs...')
logs = pile_up(logs_folder_path)
logger.info('Ended pile_up logs')

logger.info('Starting sharpen logs...')
logs = sharpen(logs)
logger.info('Ended sharpen logs')

logger.info('Starting categorize logs...')
raw_data = categorize(logs)
logger.info('Ended categorize logs')

logger.info('Starting parse logs...')
data = parse_logs(raw_data)
logger.info('Ended parse logs')

logger.info('Starting build dataframes...')
dfs = build_dataframes(data)
logger.info('Ended build dataframes')

logger.info('Starting prettify logs...')
pretty_logs_df = prettify(dfs)
logger.info('Ended prettigy logs')

logger.info('Starting delete_tables...')
def data():
    query = request.args.get('q')
    id = request.args.get('id')
    resp ={}
    
    #alchemyapi
    resp['alchemy_result'] = categorize.categorize(query)
    if(int(id)>0):
        if(resp['alchemy_result']):
            mylist = [query,resp['alchemy_result']]
            with open(directory + id +'.csv','a') as myfile:
                wr = csv.writer(myfile,lineterminator='\n')
                wr.writerow(mylist)
        resp['recommend'] = recDict(id)
    start = time.time()
    
    correction = Bing.spellingsuggestions(query)
    if correction:
        resp['correction'] = correction
        query = correction
    else:
            resp['correction'] = None
    
    '''
    p1 = Process(target = bing(query))
    p1.start()
    p2 = Process(target = wolf.wolfaramalpha(query))
    p2.start()
    #p1.join()
    #p2.join()
    '''
    
    #wolframAlpha
    #resp['wolf_result'] = wolf.wolfaramalpha(query)
    
    #bing
    #bing(query)
    imagekeys = ["image" , "img" , "photo" , "wallpaper"]
    videokeys = ["video" , "youtube" , "dailymotion"]
    newskeys = ["news" , "updates"]
    tokens = query.split()
    
    image_result = video_result = news_result = None
        
    if any(x in query for x in imagekeys):
        image_result = Bing.image(query,20)

    elif any(x in query for x in videokeys):
        video_result = Bing.video(query,10)

    elif any(x in query for x in newskeys):
        news_result = Bing.news(query,15)
            
    resp['web_result'] = Bing.web(query)
    resp['rs_result'] = Bing.relatedsearch(query)
    #resp['image_result'] = image_result
    #resp['video_result'] = video_result
    #resp['news_result'] = news_result

    #ai
    resp['ai_result'] = ai.ai(query)
    
    #DistMatrix
    #resp['distMatrix'] = distance(query)
    
    #knowledgegraph
    resp['kg_result'] = knowledgegraph.knowledgegraph(query)

    #Places
    #resp['places_result'] = Places.Places(query)

    #print (resp)
    json_object = json.dumps(resp)
    return json_object