Ejemplo n.º 1
0
                #except:
                #    pass
                b2 = time()

            if((step[1]==float("Inf") or step[1]==0) and save):
                save = False
                for j in range(8):
                    cl.visual.save(image[j], "dump/img/source/"+str(j))
                    for k in range(4):
                        cl.visual.save(step[2][j,:,:,k], "dump/img/f"+str(k)+"/"+str(j))
                        cl.visual.save(step[3][j,:,:,k], "dump/tmp/f"+str(k)+"/"+str(j))
                    cl.visual.save(template[j], "dump/tmp/template/"+str(j))
                raise Exception('error')
            b = time()
            print('iteration',i, format(b-a, '.2f'), format(step[1], '.2f'), np.mean(label) )
    except KeyboardInterrupt():
        print('exiting')
    finally:
        cl.tf.global_session().model_save()
        print('saved')
        cl.tf.global_session().close_sess()


# write this
def evaluate(model, test_data, testing_steps, i):
    return

if __name__ == "__main__":
    hparams = cl.hparams(name="default")
    train(hparams)
Ejemplo n.º 2
0
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))


def _bytes_feature(value):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))


def convert_to(source, filename, size):
    """Converts a dataset to tfrecords."""
    print('Writing', filename)
    writer = tf.python_io.TFRecordWriter(filename)

    for i in range(size):
        t1 = time.time()
        image = source.get_sequence()
        t2 = time.time()
        print(t2 - t1)
        image_raw = np.asarray(image, dtype=np.uint8).tostring()
        ex = tf.train.Example(features=tf.train.Features(
            feature={'image': _bytes_feature(image_raw)}))
        writer.write(ex.SerializeToString())
    writer.close()
    print('Saved ', size)


if __name__ == "__main__":
    hparams = cl.hparams(name="preprocessing")
    d = DataGenerator(hparams)
    convert_to(d, hparams.tfrecord_train_dest, hparams.train_size)
    convert_to(d, hparams.tfrecord_test_dest, hparams.test_size)
Ejemplo n.º 3
0
#FIXME this to go to hparams

s_width = 512
BATCH_SIZE = 4
size = 100
width = 160

#MODEL_DIR = 'logs/NCCNet_flyem/'
features = { "inputs":"image:0", "outputs": "output/image_0:0"}
#features = {"inputs": "image:0", "outputs": "add_96:0"}
#features = { "inputs":"image:0", "outputs": "output/image:0"}



# Init
hparams = cl.hparams(name="evaluation")
#d = Data(hparams, random=False)
#print('data loaded')
#image, template, _ = d.get_batch(switching=False) #Sample test



print('model loaded')

def get_batch():
    #image, template, _ = d.get_batch(switching=False)
    #template = np.pad(template, 128, mode='constant')
    image = np.zeros((BATCH_SIZE,s_width,s_width,3), dtype=np.uint8)
    template = np.zeros((BATCH_SIZE,s_width,s_width,3), dtype=np.uint8)

    i=0