Ejemplo n.º 1
0
def maximize(data, mapping={}, objective=(0, {})):
    """Maximization using the CONEstrip algorithm

      .. todo::

        document, test more and clean up

    """
    E = feasible(data, mapping)
    if E == set():
        raise ValueError("The linear program is infeasible.")
        #print("The linear program is infeasible.")
        #return 0
    l = sum(len(A) for A in E)
    h = Vector(mapping)
    goal = (objective[0], Vector(objective[1]))
    #print(goal)
    coordinates = list(frozenset.union(*(A.domain() for A in E)))
    E = [[vector for vector in A] for A in E]
    mat = Matrix([[0] + l * [0]], number_type='fraction')
    mat.extend([[-h[x]] + [v[x] for A in E for v in A]
                for x in coordinates], linear=True) # cone-constraints
    mat.extend([[0] + [int(B == A and w == v) for B in E for w in B]
                for A in E for v in A]) # mu >= 0
    mat.obj_type = LPObjType.MAX
    mat.obj_func = tuple([goal[0]] + [goal[1][v] for A in E for v in A])
                      # (constant, mu)
    #print(mat)
    lp = LinProg(mat)
    lp.solve()
    if lp.status == LPStatusType.OPTIMAL:
        #print(lp.primal_solution)
        return lp.obj_value
    elif lp.status == LPStatusType.UNDECIDED:
        status = "undecided"
    elif lp.status == LPStatusType.INCONSISTENT:
        status = "inconsistent"
    elif lp.status == LPStatusType.UNBOUNDED:
        status = "unbounded"
    else:
        status = "of unknown status"
    raise ValueError("The linear program is " + str(status) + '.')
Ejemplo n.º 2
0
def feasible(data, mapping=None):
    """Check feasibility using the CONEstrip algorithm

      .. todo::

        document, test more and clean up

    """
    D = set(Polytope(A) for A in data)
    if (mapping == None) or all(mapping[x] != 0 for x in mapping):
        h = None
    else:
        h = Vector(mapping)
        D.add(Polytope({-h}))
    coordinates = list(frozenset.union(*(A.domain() for A in D)))
    E = [[vector for vector in A] for A in D]
    #print(E)
    while (E != []):
        k = len(E)
        L = [len(A) for A in E]
        l = sum(L)
        mat = Matrix([[0] + l * [0] + k * [0]], number_type='fraction')
        mat.extend([[0] + [v[x] for A in E for v in A] + k * [0]
                    for x in coordinates],
                   linear=True) # cone-constraints
        mat.extend([[0] + [int(B == A and w == v) for B in E for w in B]
                        + k * [0]
                    for A in E for v in A]) # mu >= 0
        mat.extend([[1] + l * [0] + [-int(B == A) for B in E]
                    for A in E]) # tau <= 1
        mat.extend([[0] + l * [0] + [int(B == A) for B in E]
                    for A in E]) # tau >= 0
        mat.extend([[-1] + l * [0] + k * [1]]) # (sum of tau_A) >= 1
        mat.extend([[0] + [int(B == A and w == v) for B in E for w in B]
                        + [-int(B == A) for B in E]
                    for A in E for v in A]) # tau_A <= mu_A for all A
        if h != None: # mu_{-h} >= 1
            mat.extend([[-1] + [int(A == [-h]) for A in E for w in A]
                             + k * [0]])
        mat.obj_type = LPObjType.MAX
        mat.obj_func = tuple([0] + l * [0] + k * [1]) # (constant, mu, tau)
        #print(mat)
        lp = LinProg(mat)
        lp.solve()
        if lp.status == LPStatusType.OPTIMAL:
            sol = lp.primal_solution # (constant, mu, tau)
            tau = sol[l:]
            #print(tau)
            mu = [sol[sum(L[0:n]):sum(L[0:n]) + L[n]] for n in range(0, k)]
            #print(mu)
            E = [E[n] for n in range(0, k) if tau[n] == 1]
            #print(E)
            if all(all(mu[n][m] == 0 for m in range(0, L[n]))
                   for n in range(0, k) if tau[n] == 0):
                E = {Polytope(A) for A in E}
                #print(E)
                if h != None:
                    E = E - {Polytope([-h])}
                    #print(E)
                return E
            else:
                continue
        else:
            return set()
    else:
        return set()