Ejemplo n.º 1
0
    def teestTimes2(self):

        a=MV2.masked_array(MV2.array([0,0,0,0,0,0,0,0,0,0,0,0]),[0,1,1,1,1,1,1,1,1,1,1,0])
        bounds=numpy.ma.array(
            [[0,31],
             [31,59],
             [59,90],
             [90,120],
             [120,151],
             [151,181],
             [181,212],
             [212,243],
             [243,273],
             [273,304],
             [304,334],
             [334,365]]
            )
        ax=a.getAxis(0)
        ax.setBounds(bounds)
        #print cdutil.times.centroid(a,[-10,30]) 
        print(('Centroid Normal:',cdutil.times.centroid(a,[0,365]))) 
        print(('Centroid Cyclic:',cdutil.times.cyclicalcentroid(a,[0,365]))) 


        djf=cdutil.DJF(self.tas_mo)
        djf=cdutil.DJF(self.tas_mo,criteriaarg=[.8,0.0001])
        djf=cdutil.ANNUALCYCLE.climatology(self.tas_mo)
        djf=cdutil.YEAR.departures(self.tas_mo)
Ejemplo n.º 2
0
    def testAnnualSeasonalAverage(self):
        f = cdms2.open(self.filename, "r")

        # Read in the raw data EXCLUDING a leap year
        obs_timeseries1 = f('obs', time=slice(0, 48))  # 1900.1. to 1903.12.
        # Read in the raw data INCLUDING a leap year
        obs_timeseries2 = f('obs', time=slice(
            0, 60))  # 1900.1. to 1904.12., 1904 is year lear

        ### Truncate first Jan, Feb and last Dec before get Annual cycle anomaly ... (to have fair DJF seasonal mean later)
        obs_timeseries1 = obs_timeseries1[2:-1]
        obs_timeseries2 = obs_timeseries2[2:-1]

        ### Set monthly time bounds ...
        cdutil.setTimeBoundsMonthly(obs_timeseries1)
        cdutil.setTimeBoundsMonthly(obs_timeseries2)

        #### Removing Annual cycle ...
        obs_timeseries_ano1 = cdutil.ANNUALCYCLE.departures(obs_timeseries1)
        obs_timeseries_ano2 = cdutil.ANNUALCYCLE.departures(obs_timeseries2)

        #### Calculate time average ...
        obs_timeseries_ano_timeave1 = cdutil.averager(
            obs_timeseries_ano1, axis='t')  ## This should be zero and it does
        obs_timeseries_ano_timeave2 = cdutil.averager(
            obs_timeseries_ano2,
            axis='t')  ## This should be zero BUT it does NOT

        #### SEASONAL MEAN TEST ####
        obs_timeseries_ano1_DJF = cdutil.DJF(obs_timeseries_ano1,
                                             criteriaarg=[0.95, None])
        obs_timeseries_ano2_DJF = cdutil.DJF(obs_timeseries_ano2,
                                             criteriaarg=[0.95, None])
        obs_timeseries_ano1_JJA = cdutil.JJA(obs_timeseries_ano1,
                                             criteriaarg=[0.95, None])
        obs_timeseries_ano2_JJA = cdutil.JJA(obs_timeseries_ano2,
                                             criteriaarg=[0.95, None])

        #### Calculate time average ...
        obs_timeseries_ano1_DJF_timeave = cdutil.averager(
            obs_timeseries_ano1_DJF,
            axis='t')  ## This should be zero and it does
        obs_timeseries_ano2_DJF_timeave = cdutil.averager(
            obs_timeseries_ano2_DJF,
            axis='t')  ## This should be zero BUT it does NOT

        obs_timeseries_ano1_JJA_timeave = cdutil.averager(
            obs_timeseries_ano1_JJA,
            axis='t')  ## This should be zero and it does
        obs_timeseries_ano2_JJA_timeave = cdutil.averager(
            obs_timeseries_ano2_JJA,
            axis='t')  ## This should be zero and it does

        numpy.testing.assert_almost_equal(obs_timeseries_ano_timeave2,
                                          obs_timeseries_ano_timeave1, 10)
        numpy.testing.assert_almost_equal(obs_timeseries_ano1_JJA_timeave,
                                          obs_timeseries_ano2_JJA_timeave, 10)
        numpy.testing.assert_almost_equal(obs_timeseries_ano1_DJF_timeave,
                                          obs_timeseries_ano2_DJF_timeave, 10)
Ejemplo n.º 3
0
def write_merra2(surf=None, root=None):
    if surf is None:
        surf, root = merra2()
    cdutil.setTimeBoundsMonthly(surf)
    cdutil.setTimeBoundsMonthly(root)
    fw = cdms.open(
        "../DROUGHT_ATLAS/OBSERVATIONS/MERRA2_soilmoisture_summerseason.nc",
        "w")

    djf_surf = cdutil.DJF(surf, criteriaarg=(1, None))[1:]
    jja_surf = cdutil.DJF(surf, criteriaarg=(1, None))[1:]
    ss_surf = summerseason_GLEAM(jja_surf, djf_surf)
    ss_surf.id = "smsurf"
    fw.write(ss_surf)

    djf_root = cdutil.DJF(root, criteriaarg=(1, None))[1:]
    jja_root = cdutil.DJF(root, criteriaarg=(1, None))[1:]
    ss_root = summerseason_GLEAM(jja_root, djf_root)
    ss_root.id = "smroot"
    fw.write(ss_root)
    fw.close()
Ejemplo n.º 4
0
# Adapted for numpy/ma/cdms2 by convertcdms.py
import cdms2, cdutil, numpy.ma, MV2, os, sys, cdat_info
cdms2.setAutoBounds('on')

# centroid test

a = MV2.masked_array(MV2.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
                     [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0])
bounds = numpy.ma.array([[0, 31], [31, 59], [59, 90], [90, 120], [120, 151],
                         [151, 181], [181, 212], [212, 243], [243, 273],
                         [273, 304], [304, 334], [334, 365]])
ax = a.getAxis(0)
ax.setBounds(bounds)
#print cdutil.times.centroid(a,[-10,30])
print 'Centroid Normal:', cdutil.times.centroid(a, [0, 365])
print 'Centroid Cyclic:', cdutil.times.cyclicalcentroid(a, [0, 365])

f = cdms2.open(os.path.join(cdat_info.get_sampledata_path(), 'tas_mo.nc'))
s = f('tas')

cdutil.setTimeBoundsMonthly(s)
djf = cdutil.DJF(s)
djf = cdutil.DJF(s, criteriaarg=[.8, 0.0001])
djf = cdutil.ANNUALCYCLE.climatology(s)
djf = cdutil.YEAR.departures(s)
Ejemplo n.º 5
0
# Set time period ---
start_year = 1980
end_year = 2000
start_time = cdtime.comptime(start_year)
end_time = cdtime.comptime(end_year)

# Load variable ---
d = f('psl',
      time=(start_time, end_time),
      longitude=(-180, 180),
      latitude=(20, 90))  # Provide proper variable name
d = MV2.divide(d, 100.)  # Pa to hPa
d.units = 'hPa'

# Get DJF seasonal mean time series ---
d_DJF = cdutil.DJF(d)

# EOF (take only first variance mode...) ---
solver = Eof(d_DJF, weights='area')
eof = solver.eofsAsCovariance(neofs=1)
pc = solver.pcs(npcs=1, pcscaling=1)  # pcscaling=1: scaled to unit variance
# (divided by the square-root of their eigenvalue)
frac = solver.varianceFraction()

# Sign control if needed ---
eof = eof * -1
pc = pc * -1

#===========================================================================================================
# Plot
#-----------------------------------------------------------------------------------------------------------