Ejemplo n.º 1
0
def calc_combined_cooling_loads(building_name, locator, total_demand,
                                cooling_configuration):
    # get combined cooling supply/return conditions using substation script
    buildings_name_with_cooling = [building_name]
    substation.substation_main_cooling(locator, total_demand,
                                       buildings_name_with_cooling,
                                       cooling_configuration)
    substation_operation = pd.read_csv(
        locator.get_optimization_substations_results_file(
            building_name, "DC", ""),
        usecols=[
            "T_supply_DC_space_cooling_data_center_and_refrigeration_result_K",
            "T_return_DC_space_cooling_data_center_and_refrigeration_result_K",
            "mdot_space_cooling_data_center_and_refrigeration_result_kgpers"
        ])
    T_re_K = substation_operation[
        "T_return_DC_space_cooling_data_center_and_refrigeration_result_K"].values
    T_sup_K = substation_operation[
        "T_supply_DC_space_cooling_data_center_and_refrigeration_result_K"].values
    mdot_kgpers = substation_operation[
        "mdot_space_cooling_data_center_and_refrigeration_result_kgpers"].values
    # calculate combined load
    Qc_load_W = np.vectorize(calc_new_load)(mdot_kgpers, T_sup_K, T_re_K)
    Qc_design_W = Qc_load_W.max()
    return Qc_design_W, T_re_K, T_sup_K, mdot_kgpers
def thermal_networks_in_individual(locator, weather_features, DCN_barcode,
                                   DHN_barcode, district_heating_network,
                                   district_cooling_network,
                                   column_names_buildings_heating,
                                   column_names_buildings_cooling):
    # local variables
    ground_temp = weather_features.ground_temp

    # EVALUATE CASES TO CREATE A NETWORK OR NOT
    if district_heating_network:  # network exists
        if not os.path.exists(
                locator.get_optimization_network_results_summary(
                    'DH', DHN_barcode)):
            total_demand = createTotalNtwCsv(DHN_barcode, locator,
                                             column_names_buildings_heating)
            num_total_buildings = len(column_names_buildings_heating)
            buildings_in_heating_network = total_demand.Name.values
            # Run the substation and distribution routines
            substation.substation_main_heating(locator,
                                               total_demand,
                                               buildings_in_heating_network,
                                               DHN_barcode=DHN_barcode)
            DH_network_summary_individual = summarize_network.network_main(
                locator, buildings_in_heating_network, ground_temp,
                num_total_buildings, "DH", DHN_barcode)
        else:
            DH_network_summary_individual = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DH', DHN_barcode))
    else:
        DH_network_summary_individual = None

    if district_cooling_network:  # network exists
        if not os.path.exists(
                locator.get_optimization_network_results_summary(
                    'DC', DCN_barcode)):
            total_demand = createTotalNtwCsv(DCN_barcode, locator,
                                             column_names_buildings_cooling)
            num_total_buildings = len(column_names_buildings_cooling)
            buildings_in_cooling_network = total_demand.Name.values

            # Run the substation and distribution routines
            substation.substation_main_cooling(locator,
                                               total_demand,
                                               buildings_in_cooling_network,
                                               DCN_barcode=DCN_barcode)
            DC_network_summary_individual = summarize_network.network_main(
                locator, buildings_in_cooling_network, ground_temp,
                num_total_buildings, 'DC', DCN_barcode)
        else:
            DC_network_summary_individual = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DC', DCN_barcode))
    else:
        DC_network_summary_individual = None

    return DH_network_summary_individual, DC_network_summary_individual
def preproccessing(locator, total_demand, buildings_heating_demand, buildings_cooling_demand,
                   weather_file, district_heating_network, district_cooling_network):
    """
    This function aims at preprocessing all data for the optimization.

    :param locator: path to locator function
    :param total_demand: dataframe with total demand and names of all building in the area
    :param building_names: dataframe with names of all buildings in the area
    :param weather_file: path to wather file
    :type locator: class
    :type total_demand: list
    :type building_names: list
    :type weather_file: string
    :return:
        - extraCosts: extra pareto optimal costs due to electricity and process heat (
            these are treated separately and not considered inside the optimization)
        - extraCO2: extra pareto optimal emissions due to electricity and process heat (
            these are treated separately and not considered inside the optimization)
        - extraPrim: extra pareto optimal primary energy due to electricity and process heat (
            these are treated separately and not considered inside the optimization)
        - solar_features: extraction of solar features form the results of the solar technologies
            calculation.

    :rtype: float, float, float, float

    """

    # local variables
    network_depth_m = Z0

    print("PRE-PROCESSING 1/2: weather properties")
    T_ambient = epwreader.epw_reader(weather_file)['drybulb_C']
    ground_temp = calc_ground_temperature(locator, T_ambient, depth_m=network_depth_m)

    print("PRE-PROCESSING 2/2: thermal networks")  # at first estimate a distribution with all the buildings connected
    if district_heating_network:
        num_tot_buildings = len(buildings_heating_demand)
        DHN_barcode = ''.join(str(1) for e in range(num_tot_buildings))
        substation.substation_main_heating(locator, total_demand, buildings_heating_demand,
                                           DHN_barcode=DHN_barcode)

        summarize_network.network_main(locator, buildings_heating_demand, ground_temp, num_tot_buildings, "DH",
                                       DHN_barcode)
        # "_all" key for all buildings
    if district_cooling_network:
        num_tot_buildings = len(buildings_cooling_demand)
        DCN_barcode = ''.join(str(1) for e in range(num_tot_buildings))
        substation.substation_main_cooling(locator, total_demand, buildings_cooling_demand, DCN_barcode=DCN_barcode)

        summarize_network.network_main(locator, buildings_cooling_demand,
                                       ground_temp, num_tot_buildings, "DC",
                                       DCN_barcode)  # "_all" key for all buildings

    network_features = NetworkOptimizationFeatures(district_heating_network, district_cooling_network, locator)

    return network_features
Ejemplo n.º 4
0
def thermal_network_simplified(locator, config, network_name):
    # local variables
    network_type = config.thermal_network.network_type
    min_head_substation_kPa = config.thermal_network.min_head_substation
    thermal_transfer_unit_design_head_m = min_head_substation_kPa * 1000 / M_WATER_TO_PA
    coefficient_friction_hazen_williams = config.thermal_network.hw_friction_coefficient
    velocity_ms = config.thermal_network.peak_load_velocity
    fraction_equivalent_length = config.thermal_network.equivalent_length_factor
    peak_load_percentage = config.thermal_network.peak_load_percentage

    # GET INFORMATION ABOUT THE NETWORK
    edge_df, node_df = get_thermal_network_from_shapefile(locator, network_type, network_name)

    # GET INFORMATION ABOUT THE DEMAND OF BUILDINGS AND CONNECT TO THE NODE INFO
    # calculate substations for all buildings
    # local variables
    total_demand = pd.read_csv(locator.get_total_demand())
    volume_flow_m3pers_building = pd.DataFrame()
    T_sup_K_building = pd.DataFrame()
    T_re_K_building = pd.DataFrame()
    Q_demand_kWh_building = pd.DataFrame()
    if network_type == "DH":
        buildings_name_with_heating = get_building_names_with_load(total_demand, load_name='QH_sys_MWhyr')
        buildings_name_with_space_heating = get_building_names_with_load(total_demand, load_name='Qhs_sys_MWhyr')
        DHN_barcode = "0"
        if (buildings_name_with_heating != [] and buildings_name_with_space_heating != []):
            building_names = [building for building in buildings_name_with_heating if building in
                              node_df.Building.values]
            substation.substation_main_heating(locator, total_demand, building_names, DHN_barcode=DHN_barcode)
        else:
            raise Exception('problem here')

        for building_name in building_names:
            substation_results = pd.read_csv(
                locator.get_optimization_substations_results_file(building_name, "DH", DHN_barcode))
            volume_flow_m3pers_building[building_name] = substation_results["mdot_DH_result_kgpers"] / P_WATER_KGPERM3
            T_sup_K_building[building_name] = substation_results["T_supply_DH_result_K"]
            T_re_K_building[building_name] = np.where(substation_results["T_return_DH_result_K"] >273.15,
                                                      substation_results["T_return_DH_result_K"], np.nan)
            Q_demand_kWh_building[building_name] = (substation_results["Q_heating_W"] + substation_results[
                "Q_dhw_W"]) / 1000

    if network_type == "DC":
        buildings_name_with_cooling = get_building_names_with_load(total_demand, load_name='QC_sys_MWhyr')
        DCN_barcode = "0"
        if buildings_name_with_cooling != []:
            building_names = [building for building in buildings_name_with_cooling if building in
                              node_df.Building.values]
            substation.substation_main_cooling(locator, total_demand, building_names, DCN_barcode=DCN_barcode)
        else:
            raise Exception('problem here')

        for building_name in building_names:
            substation_results = pd.read_csv(
                locator.get_optimization_substations_results_file(building_name, "DC", DCN_barcode))
            volume_flow_m3pers_building[building_name] = substation_results[
                                                             "mdot_space_cooling_data_center_and_refrigeration_result_kgpers"] / P_WATER_KGPERM3
            T_sup_K_building[building_name] = substation_results[
                "T_supply_DC_space_cooling_data_center_and_refrigeration_result_K"]
            T_re_K_building[building_name] = substation_results[
                "T_return_DC_space_cooling_data_center_and_refrigeration_result_K"]
            Q_demand_kWh_building[building_name] = substation_results[
                                                       "Q_space_cooling_data_center_and_refrigeration_W"] / 1000


    import cea.utilities
    with cea.utilities.pushd(locator.get_thermal_network_folder()):
        # Create a water network model
        wn = wntr.network.WaterNetworkModel()

        # add loads
        building_base_demand_m3s = {}
        for building in volume_flow_m3pers_building.keys():
            building_base_demand_m3s[building] = volume_flow_m3pers_building[building].max()
            pattern_demand = (volume_flow_m3pers_building[building].values / building_base_demand_m3s[building]).tolist()
            wn.add_pattern(building, pattern_demand)

        # add nodes
        consumer_nodes = []
        building_nodes_pairs = {}
        building_nodes_pairs_inversed = {}
        for node in node_df.iterrows():
            if node[1]["Type"] == "CONSUMER":
                demand_pattern = node[1]['Building']
                base_demand_m3s = building_base_demand_m3s[demand_pattern]
                consumer_nodes.append(node[0])
                building_nodes_pairs[node[0]] = demand_pattern
                building_nodes_pairs_inversed[demand_pattern] = node[0]
                wn.add_junction(node[0],
                                base_demand=base_demand_m3s,
                                demand_pattern=demand_pattern,
                                elevation=thermal_transfer_unit_design_head_m,
                                coordinates=node[1]["coordinates"])
            elif node[1]["Type"] == "PLANT":
                base_head = int(thermal_transfer_unit_design_head_m*1.2)
                start_node = node[0]
                name_node_plant = start_node
                wn.add_reservoir(start_node,
                                 base_head=base_head,
                                 coordinates=node[1]["coordinates"])
            else:
                wn.add_junction(node[0],
                                elevation=0,
                                coordinates=node[1]["coordinates"])

        # add pipes
        for edge in edge_df.iterrows():
            length_m = edge[1]["length_m"]
            edge_name = edge[0]
            wn.add_pipe(edge_name, edge[1]["start node"],
                        edge[1]["end node"],
                        length=length_m * (1 + fraction_equivalent_length),
                        roughness=coefficient_friction_hazen_williams,
                        minor_loss=0.0,
                        status='OPEN')

        # add options
        wn.options.time.duration = 8759 * 3600   # this indicates epanet to do one year simulation
        wn.options.time.hydraulic_timestep = 60 * 60
        wn.options.time.pattern_timestep = 60 * 60
        wn.options.solver.accuracy = 0.01
        wn.options.solver.trials = 100

        # 1st ITERATION GET MASS FLOWS AND CALCULATE DIAMETER
        sim = wntr.sim.EpanetSimulator(wn)
        results = sim.run_sim()
        max_volume_flow_rates_m3s = results.link['flowrate'].abs().max()
        pipe_names = max_volume_flow_rates_m3s.index.values
        pipe_catalog = pd.read_excel(locator.get_database_distribution_systems(), sheet_name='THERMAL_GRID')
        Pipe_DN, D_ext_m, D_int_m, D_ins_m = zip(
            *[calc_max_diameter(flow, pipe_catalog, velocity_ms=velocity_ms, peak_load_percentage=peak_load_percentage) for
              flow in max_volume_flow_rates_m3s])
        pipe_dn = pd.Series(Pipe_DN, pipe_names)
        diameter_int_m = pd.Series(D_int_m, pipe_names)
        diameter_ext_m = pd.Series(D_ext_m, pipe_names)
        diameter_ins_m = pd.Series(D_ins_m, pipe_names)

        # 2nd ITERATION GET PRESSURE POINTS AND MASSFLOWS FOR SIZING PUMPING NEEDS - this could be for all the year
        # modify diameter and run simulations
        edge_df['Pipe_DN'] = pipe_dn
        edge_df['D_int_m'] = D_int_m
        for edge in edge_df.iterrows():
            edge_name = edge[0]
            pipe = wn.get_link(edge_name)
            pipe.diameter = diameter_int_m[edge_name]
        sim = wntr.sim.EpanetSimulator(wn)
        results = sim.run_sim()

        # 3rd ITERATION GET FINAL UTILIZATION OF THE GRID (SUPPLY SIDE)
        # get accumulated head loss per hour
        unitary_head_ftperkft = results.link['headloss'].abs()
        unitary_head_mperm = unitary_head_ftperkft * FT_TO_M / (FT_TO_M * 1000)
        head_loss_m = unitary_head_mperm.copy()
        for column in head_loss_m.columns.values:
            length_m = edge_df.loc[column]['length_m']
            head_loss_m[column] = head_loss_m[column] * length_m
        reservoir_head_loss_m = head_loss_m.sum(axis=1) + thermal_transfer_unit_design_head_m*1.2 # fixme: only one thermal_transfer_unit_design_head_m from one substation?

        # apply this pattern to the reservoir and get results
        base_head = reservoir_head_loss_m.max()
        pattern_head_m = (reservoir_head_loss_m.values / base_head).tolist()
        wn.add_pattern('reservoir', pattern_head_m)
        reservoir = wn.get_node(name_node_plant)
        reservoir.head_timeseries.base_value = int(base_head)
        reservoir.head_timeseries._pattern = 'reservoir'
        sim = wntr.sim.EpanetSimulator(wn)
        results = sim.run_sim()

    # POSTPROCESSING

    # $ POSTPROCESSING - PRESSURE/HEAD LOSSES PER PIPE PER HOUR OF THE YEAR
    # at the pipes
    unitary_head_loss_supply_network_ftperkft = results.link['headloss'].abs()
    linear_pressure_loss_Paperm = unitary_head_loss_supply_network_ftperkft * FT_WATER_TO_PA / (FT_TO_M * 1000)
    head_loss_supply_network_Pa = linear_pressure_loss_Paperm.copy()
    for column in head_loss_supply_network_Pa.columns.values:
        length_m = edge_df.loc[column]['length_m']
        head_loss_supply_network_Pa[column] = head_loss_supply_network_Pa[column] * length_m

    head_loss_return_network_Pa = head_loss_supply_network_Pa.copy(0)
    # at the substations
    head_loss_substations_ft = results.node['head'][consumer_nodes].abs()
    head_loss_substations_Pa = head_loss_substations_ft * FT_WATER_TO_PA

    #POSTPORCESSING MASSFLOW RATES
    # MASS_FLOW_RATE (EDGES)
    flow_rate_supply_m3s = results.link['flowrate'].abs()
    massflow_supply_kgs = flow_rate_supply_m3s * P_WATER_KGPERM3

    # $ POSTPROCESSING - PRESSURE LOSSES ACCUMULATED PER HOUR OF THE YEAR (TIMES 2 to account for return)
    accumulated_head_loss_supply_Pa = head_loss_supply_network_Pa.sum(axis=1)
    accumulated_head_loss_return_Pa = head_loss_return_network_Pa.sum(axis=1)
    accumulated_head_loss_substations_Pa = head_loss_substations_Pa.sum(axis=1)
    accumulated_head_loss_total_Pa = accumulated_head_loss_supply_Pa + accumulated_head_loss_return_Pa + accumulated_head_loss_substations_Pa

    # $ POSTPROCESSING - THERMAL LOSSES PER PIPE PER HOUR OF THE YEAR (SUPPLY)
    # calculate the thermal characteristics of the grid
    temperature_of_the_ground_K = calculate_ground_temperature(locator)
    thermal_coeffcient_WperKm = pd.Series(
        np.vectorize(calc_linear_thermal_loss_coefficient)(diameter_ext_m, diameter_int_m, diameter_ins_m), pipe_names)
    average_temperature_supply_K = T_sup_K_building.mean(axis=1)


    thermal_losses_supply_kWh = results.link['headloss'].copy()
    thermal_losses_supply_kWh.reset_index(inplace=True, drop=True)
    thermal_losses_supply_Wperm = thermal_losses_supply_kWh.copy()
    for pipe in pipe_names:
        length_m = edge_df.loc[pipe]['length_m']
        massflow_kgs = massflow_supply_kgs[pipe]
        k_WperKm_pipe = thermal_coeffcient_WperKm[pipe]
        k_kWperK = k_WperKm_pipe * length_m / 1000
        thermal_losses_supply_kWh[pipe] = np.vectorize(calc_thermal_loss_per_pipe)(average_temperature_supply_K.values,
                                                                     massflow_kgs.values,
                                                                     temperature_of_the_ground_K,
                                                                     k_kWperK,
                                                                     )

        thermal_losses_supply_Wperm[pipe] = (thermal_losses_supply_kWh[pipe] / length_m) * 1000

    # return pipes
    average_temperature_return_K = T_re_K_building.mean(axis=1)
    thermal_losses_return_kWh = results.link['headloss'].copy()
    thermal_losses_return_kWh.reset_index(inplace=True, drop=True)
    for pipe in pipe_names:
        length_m = edge_df.loc[pipe]['length_m']
        massflow_kgs = massflow_supply_kgs[pipe]
        k_WperKm_pipe = thermal_coeffcient_WperKm[pipe]
        k_kWperK = k_WperKm_pipe * length_m / 1000
        thermal_losses_return_kWh[pipe] = np.vectorize(calc_thermal_loss_per_pipe)(average_temperature_return_K.values,
                                                                     massflow_kgs.values,
                                                                     temperature_of_the_ground_K,
                                                                     k_kWperK,
                                                                     )
    # WRITE TO DISK

    # LINEAR PRESSURE LOSSES (EDGES)
    linear_pressure_loss_Paperm.to_csv(locator.get_network_linear_pressure_drop_edges(network_type, network_name),
                                       index=False)

    # MASS_FLOW_RATE (EDGES)
    flow_rate_supply_m3s = results.link['flowrate'].abs()
    massflow_supply_kgs = flow_rate_supply_m3s * P_WATER_KGPERM3
    massflow_supply_kgs.to_csv(locator.get_thermal_network_layout_massflow_edges_file(network_type, network_name),
                               index=False)

    # VELOCITY (EDGES)
    velocity_edges_ms = results.link['velocity'].abs()
    velocity_edges_ms.to_csv(locator.get_thermal_network_velocity_edges_file(network_type, network_name),
                             index=False)

    # PRESSURE LOSSES (NODES)
    pressure_at_nodes_ft = results.node['pressure'].abs()
    pressure_at_nodes_Pa = pressure_at_nodes_ft * FT_TO_M * M_WATER_TO_PA
    pressure_at_nodes_Pa.to_csv(locator.get_network_pressure_at_nodes(network_type, network_name), index=False)

    # MASS_FLOW_RATE (NODES)
    # $ POSTPROCESSING - MASSFLOWRATES PER NODE PER HOUR OF THE YEAR
    flow_rate_supply_nodes_m3s = results.node['demand'].abs()
    massflow_supply_nodes_kgs = flow_rate_supply_nodes_m3s * P_WATER_KGPERM3
    massflow_supply_nodes_kgs.to_csv(locator.get_thermal_network_layout_massflow_nodes_file(network_type, network_name),
                                     index=False)

    # thermal demand per building (no losses in the network or substations)
    Q_demand_Wh_building = Q_demand_kWh_building * 1000
    Q_demand_Wh_building.to_csv(locator.get_thermal_demand_csv_file(network_type, network_name), index=False)

    # pressure losses total
    # $ POSTPROCESSING - PUMPING NEEDS PER HOUR OF THE YEAR (TIMES 2 to account for return)
    flow_rate_substations_m3s = results.node['demand'][consumer_nodes].abs()
    head_loss_supply_kWperm = (linear_pressure_loss_Paperm * (flow_rate_supply_m3s * 3600)) / (3.6E6 * PUMP_ETA)
    head_loss_return_kWperm = head_loss_supply_kWperm.copy()
    pressure_loss_supply_edge_kW = (head_loss_supply_network_Pa * (flow_rate_supply_m3s * 3600)) / (3.6E6 * PUMP_ETA)
    head_loss_return_kW = pressure_loss_supply_edge_kW.copy()
    head_loss_substations_kW = (head_loss_substations_Pa * (flow_rate_substations_m3s * 3600)) / (3.6E6 * PUMP_ETA)
    accumulated_head_loss_supply_kW = pressure_loss_supply_edge_kW.sum(axis=1)
    accumulated_head_loss_return_kW = head_loss_return_kW.sum(axis=1)
    accumulated_head_loss_substations_kW = head_loss_substations_kW.sum(axis=1)
    accumulated_head_loss_total_kW = accumulated_head_loss_supply_kW + \
                                     accumulated_head_loss_return_kW + \
                                     accumulated_head_loss_substations_kW
    head_loss_system_Pa = pd.DataFrame({"pressure_loss_supply_Pa": accumulated_head_loss_supply_Pa,
                                        "pressure_loss_return_Pa": accumulated_head_loss_return_Pa,
                                        "pressure_loss_substations_Pa": accumulated_head_loss_substations_Pa,
                                        "pressure_loss_total_Pa": accumulated_head_loss_total_Pa})
    head_loss_system_Pa.to_csv(locator.get_network_total_pressure_drop_file(network_type, network_name),
                               index=False)

    # $ POSTPROCESSING - PLANT HEAT REQUIREMENT
    plant_load_kWh = thermal_losses_supply_kWh.sum(axis=1) * 2 + Q_demand_kWh_building.sum(
        axis=1) - accumulated_head_loss_total_kW.values
    plant_load_kWh.to_csv(locator.get_thermal_network_plant_heat_requirement_file(network_type, network_name),
                          header=['thermal_load_kW'], index=False)

    # pressure losses per piping system
    pressure_loss_supply_edge_kW.to_csv(
        locator.get_thermal_network_pressure_losses_edges_file(network_type, network_name), index=False)

    # pressure losses per substation
    head_loss_substations_kW = head_loss_substations_kW.rename(columns=building_nodes_pairs)
    head_loss_substations_kW.to_csv(locator.get_thermal_network_substation_ploss_file(network_type, network_name),
                                    index=False)

    # pumping needs losses total
    pumping_energy_system_kWh = pd.DataFrame({"pressure_loss_supply_kW": accumulated_head_loss_supply_kW,
                                              "pressure_loss_return_kW": accumulated_head_loss_return_kW,
                                              "pressure_loss_substations_kW": accumulated_head_loss_substations_kW,
                                              "pressure_loss_total_kW": accumulated_head_loss_total_kW})
    pumping_energy_system_kWh.to_csv(
        locator.get_network_energy_pumping_requirements_file(network_type, network_name), index=False)

    # pumping needs losses total
    temperatures_plant_C = pd.DataFrame({"temperature_supply_K": average_temperature_supply_K,
                                         "temperature_return_K": average_temperature_return_K})
    temperatures_plant_C.to_csv(locator.get_network_temperature_plant(network_type, network_name), index=False)

    # thermal losses
    thermal_losses_supply_kWh.to_csv(locator.get_network_thermal_loss_edges_file(network_type, network_name),
                                     index=False)
    thermal_losses_supply_Wperm.to_csv(locator.get_network_linear_thermal_loss_edges_file(network_type, network_name),
                                       index=False)

    # thermal losses total
    accumulated_thermal_losses_supply_kWh = thermal_losses_supply_kWh.sum(axis=1)
    accumulated_thermal_losses_return_kWh = thermal_losses_return_kWh.sum(axis=1)
    accumulated_thermal_loss_total_kWh = accumulated_thermal_losses_supply_kWh + accumulated_thermal_losses_return_kWh
    thermal_losses_total_kWh = pd.DataFrame({"thermal_loss_supply_kW": accumulated_thermal_losses_supply_kWh,
                                             "thermal_loss_return_kW": accumulated_thermal_losses_return_kWh,
                                             "thermal_loss_total_kW": accumulated_thermal_loss_total_kWh})
    thermal_losses_total_kWh.to_csv(locator.get_network_total_thermal_loss_file(network_type, network_name),
                                    index=False)

    # return average temperature of supply at the substations
    T_sup_K_nodes = T_sup_K_building.rename(columns=building_nodes_pairs_inversed)
    average_year = T_sup_K_nodes.mean(axis=1)
    for node in node_df.index.values:
        T_sup_K_nodes[node] = average_year
    T_sup_K_nodes.to_csv(locator.get_network_temperature_supply_nodes_file(network_type, network_name),
                         index=False)

    # return average temperature of return at the substations
    T_return_K_nodes = T_re_K_building.rename(columns=building_nodes_pairs_inversed)
    average_year = T_return_K_nodes.mean(axis=1)
    for node in node_df.index.values:
        T_return_K_nodes[node] = average_year
    T_return_K_nodes.to_csv(locator.get_network_temperature_return_nodes_file(network_type, network_name),
                         index=False)

    # summary of edges used for the calculation
    fields_edges = ['length_m', 'Pipe_DN', 'Type_mat', 'D_int_m']
    edge_df[fields_edges].to_csv(locator.get_thermal_network_edge_list_file(network_type, network_name))
    fields_nodes = ['Type', 'Building']
    node_df[fields_nodes].to_csv(locator.get_thermal_network_node_types_csv_file(network_type, network_name))

    # correct diameter of network and save to the shapefile
    from cea.utilities.dbf import dataframe_to_dbf, dbf_to_dataframe
    fields = ['length_m', 'Pipe_DN', 'Type_mat']
    edge_df = edge_df[fields]
    edge_df['name'] = edge_df.index.values
    network_edges_df = dbf_to_dataframe(
        locator.get_network_layout_edges_shapefile(network_type, network_name).split('.shp')[0] + '.dbf')
    network_edges_df = network_edges_df.merge(edge_df, left_on='Name', right_on='name', suffixes=('_x', ''))
    network_edges_df = network_edges_df.drop(['Pipe_DN_x', 'Type_mat_x', 'name', 'length_m_x'], axis=1)
    dataframe_to_dbf(network_edges_df,
                     locator.get_network_layout_edges_shapefile(network_type, network_name).split('.shp')[0] + '.dbf')
def preproccessing(locator, total_demand, buildings_heating_demand, buildings_cooling_demand,
                   weather_file, district_heating_network, district_cooling_network):
    """
    This function aims at preprocessing all data for the optimization.

    :param locator: path to locator function
    :param total_demand: dataframe with total demand and names of all building in the area
    :param building_names: dataframe with names of all buildings in the area
    :param weather_file: path to wather file
    :type locator: class
    :type total_demand: list
    :type building_names: list
    :type weather_file: string
    :return:
        - extraCosts: extra pareto optimal costs due to electricity and process heat (
            these are treated separately and not considered inside the optimization)
        - extraCO2: extra pareto optimal emissions due to electricity and process heat (
            these are treated separately and not considered inside the optimization)
        - extraPrim: extra pareto optimal primary energy due to electricity and process heat (
            these are treated separately and not considered inside the optimization)
        - solar_features: extraction of solar features form the results of the solar technologies
            calculation.

    :rtype: float, float, float, float

    """
    print("PRE-PROCESSING 0/4: initialize directory")
    shutil.rmtree(locator.get_optimization_master_results_folder())
    shutil.rmtree(locator.get_optimization_network_results_folder())
    shutil.rmtree(locator.get_optimization_slave_results_folder())
    shutil.rmtree(locator.get_optimization_substations_folder())

    print("PRE-PROCESSING 1/4: weather features")  # at first estimate a distribution with all the buildings connected
    weather_features = WeatherFeatures(weather_file, locator)

    print("PRE-PROCESSING 2/4: conversion systems database")  # at first estimate a distribution with all the buildings connected
    supply_systems = SupplySystemsDatabase(locator)

    print("PRE-PROCESSING 3/4: feedstocks systems database")  # at first estimate a distribution with all the buildings connected
    prices = Prices(supply_systems)
    lca = LcaCalculations(supply_systems)

    print("PRE-PROCESSING 4/4: network features")  # at first estimate a distribution with all the buildings connected
    if district_heating_network:
        num_tot_buildings = len(buildings_heating_demand)
        DHN_barcode = ''.join(str(1) for e in range(num_tot_buildings))
        substation.substation_main_heating(locator, total_demand, buildings_heating_demand,
                                           DHN_barcode=DHN_barcode)

        summarize_network.network_main(locator, buildings_heating_demand, weather_features.ground_temp, num_tot_buildings, "DH",
                                       DHN_barcode)
        # "_all" key for all buildings
    if district_cooling_network:
        num_tot_buildings = len(buildings_cooling_demand)
        DCN_barcode = ''.join(str(1) for e in range(num_tot_buildings))
        substation.substation_main_cooling(locator, total_demand, buildings_cooling_demand, DCN_barcode=DCN_barcode)

        summarize_network.network_main(locator, buildings_cooling_demand,
                                       weather_features.ground_temp, num_tot_buildings, "DC",
                                       DCN_barcode)  # "_all" key for all buildings

    network_features = NetworkOptimizationFeatures(district_heating_network, district_cooling_network, locator)

    return weather_features, network_features, prices, lca
Ejemplo n.º 6
0
def extract_loads_individual(locator, DCN_barcode, DHN_barcode,
                             district_heating_network,
                             district_cooling_network,
                             column_names_buildings_heating,
                             column_names_buildings_cooling):
    # local variables
    weather_file = locator.get_weather_file()
    network_depth_m = Z0
    T_ambient = epwreader.epw_reader(weather_file)['drybulb_C']
    ground_temp = calc_ground_temperature(locator,
                                          T_ambient,
                                          depth_m=network_depth_m)

    # EVALUATE CASES TO CREATE A NETWORK OR NOT
    if district_heating_network:  # network exists
        network_file_name_heating = "DH_Network_summary_result_" + hex(
            int(str(DHN_barcode), 2)) + ".csv"
        if not os.path.exists(
                locator.get_optimization_network_results_summary(
                    'DH', DHN_barcode)):
            total_demand = createTotalNtwCsv(DHN_barcode, locator,
                                             column_names_buildings_heating)
            num_total_buildings = len(column_names_buildings_heating)
            buildings_in_heating_network = total_demand.Name.values
            # Run the substation and distribution routines
            substation.substation_main_heating(locator,
                                               total_demand,
                                               buildings_in_heating_network,
                                               DHN_barcode=DHN_barcode)
            results = summarize_network.network_main(
                locator, buildings_in_heating_network, ground_temp,
                num_total_buildings, "DH", DHN_barcode)
        else:
            results = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DH', DHN_barcode))

        Q_DHNf_W = results['Q_DHNf_W'].values
        Q_heating_max_W = Q_DHNf_W.max()
        Qcdata_netw_total_kWh = results['Qcdata_netw_total_kWh'].values
        Q_wasteheat_datacentre_max_W = Qcdata_netw_total_kWh.max()
    else:
        Q_heating_max_W = 0.0
        Q_wasteheat_datacentre_max_W = 0.0
        network_file_name_heating = ""

    if district_cooling_network:  # network exists
        network_file_name_cooling = "DC_Network_summary_result_" + hex(
            int(str(DCN_barcode), 2)) + ".csv"
        if not os.path.exists(
                locator.get_optimization_network_results_summary(
                    'DC', DCN_barcode)):
            total_demand = createTotalNtwCsv(DCN_barcode, locator,
                                             column_names_buildings_cooling)
            num_total_buildings = len(column_names_buildings_cooling)
            buildings_in_cooling_network = total_demand.Name.values

            # Run the substation and distribution routines
            substation.substation_main_cooling(locator,
                                               total_demand,
                                               buildings_in_cooling_network,
                                               DCN_barcode=DCN_barcode)
            results = summarize_network.network_main(
                locator, buildings_in_cooling_network, ground_temp,
                num_total_buildings, 'DC', DCN_barcode)
        else:
            results = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DC', DCN_barcode))

        # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
        Q_DCNf_W = results[
            "Q_DCNf_space_cooling_data_center_and_refrigeration_W"].values
        Q_cooling_max_W = Q_DCNf_W.max()
    else:
        Q_cooling_max_W = 0.0
        network_file_name_cooling = ""

    Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK)
    Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK)

    return Q_cooling_nom_W, Q_heating_nom_W, Q_wasteheat_datacentre_max_W, network_file_name_cooling, network_file_name_heating
def extract_loads_individual(locator, config, individual_with_name_dict,
                             DCN_barcode, DHN_barcode,
                             district_heating_network,
                             district_cooling_network,
                             column_names_buildings_heating,
                             column_names_buildings_cooling):
    # local variables
    weather_file = locator.get_weather_file()
    network_depth_m = Z0
    T_ambient = epwreader.epw_reader(weather_file)['drybulb_C']
    ground_temp = calc_ground_temperature(locator,
                                          T_ambient,
                                          depth_m=network_depth_m)

    # EVALUATE CASES TO CREATE A NETWORK OR NOT
    if district_heating_network:  # network exists
        if DHN_barcode.count("1") == len(column_names_buildings_heating):
            network_file_name_heating = "DH_Network_summary_result_" + hex(
                int(str(DHN_barcode), 2)) + ".csv"
            Q_DHNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DH', DHN_barcode),
                usecols=["Q_DHNf_W"]).values
            Q_heating_max_W = Q_DHNf_W.max()
        elif DHN_barcode.count("1") == 0:  # no network at all
            network_file_name_heating = "DH_Network_summary_result_" + hex(
                int(str(DHN_barcode), 2)) + ".csv"
            Q_heating_max_W = 0
        else:
            network_file_name_heating = "DH_Network_summary_result_" + hex(
                int(str(DHN_barcode), 2)) + ".csv"
            if not os.path.exists(
                    locator.get_optimization_network_results_summary(
                        'DH', DHN_barcode)):
                total_demand = createTotalNtwCsv(
                    DHN_barcode, locator, column_names_buildings_heating)
                num_total_buildings = len(column_names_buildings_heating)
                buildings_in_heating_network = total_demand.Name.values
                # Run the substation and distribution routines
                substation.substation_main_heating(
                    locator,
                    total_demand,
                    buildings_in_heating_network,
                    DHN_barcode=DHN_barcode)
                summarize_network.network_main(locator,
                                               buildings_in_heating_network,
                                               ground_temp,
                                               num_total_buildings, "DH",
                                               DHN_barcode)

            Q_DHNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DH', DHN_barcode),
                usecols=["Q_DHNf_W"]).values
            Q_heating_max_W = Q_DHNf_W.max()
    else:
        Q_heating_max_W = 0.0
        network_file_name_heating = ""

    if district_cooling_network:  # network exists
        if DCN_barcode.count("1") == len(column_names_buildings_cooling):
            network_file_name_cooling = "DC_Network_summary_result_" + hex(
                int(str(DCN_barcode), 2)) + ".csv"
            if individual_with_name_dict['HPServer'] == 1:
                # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
                Q_DCNf_W_no_server_demand = pd.read_csv(
                    locator.get_optimization_network_results_summary(
                        'DC', DCN_barcode),
                    usecols=["Q_DCNf_space_cooling_and_refrigeration_W"
                             ]).values
                Q_DCNf_W_with_server_demand = pd.read_csv(
                    locator.get_optimization_network_results_summary(
                        'DC', DCN_barcode),
                    usecols=[
                        "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                    ]).values

                Q_DCNf_W = Q_DCNf_W_no_server_demand + (
                    (Q_DCNf_W_with_server_demand - Q_DCNf_W_no_server_demand) *
                    (individual_with_name_dict['HPShare']))

            else:
                Q_DCNf_W = pd.read_csv(
                    locator.get_optimization_network_results_summary(
                        'DC', DCN_barcode),
                    usecols=[
                        "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                    ]).values
            Q_cooling_max_W = Q_DCNf_W.max()
        elif DCN_barcode.count("1") == 0:
            network_file_name_cooling = "DC_Network_summary_result_" + hex(
                int(str(DCN_barcode), 2)) + ".csv"
            Q_cooling_max_W = 0.0
        else:
            network_file_name_cooling = "DC_Network_summary_result_" + hex(
                int(str(DCN_barcode), 2)) + ".csv"

            if not os.path.exists(
                    locator.get_optimization_network_results_summary(
                        'DC', DCN_barcode)):
                total_demand = createTotalNtwCsv(
                    DCN_barcode, locator, column_names_buildings_cooling)
                num_total_buildings = len(column_names_buildings_cooling)
                buildings_in_cooling_network = total_demand.Name.values

                # Run the substation and distribution routines
                substation.substation_main_cooling(
                    locator,
                    total_demand,
                    buildings_in_cooling_network,
                    DCN_barcode=DCN_barcode)
                summarize_network.network_main(locator,
                                               buildings_in_cooling_network,
                                               ground_temp,
                                               num_total_buildings, 'DC',
                                               DCN_barcode)

            Q_DCNf_W_no_server_demand = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DC', DCN_barcode),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
            Q_DCNf_W_with_server_demand = pd.read_csv(
                locator.get_optimization_network_results_summary(
                    'DC', DCN_barcode),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values

            # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            if district_heating_network and individual_with_name_dict[
                    'HPServer'] == 1:
                Q_DCNf_W = Q_DCNf_W_no_server_demand + (
                    (Q_DCNf_W_with_server_demand - Q_DCNf_W_no_server_demand) *
                    (individual_with_name_dict['HPShare']))
            else:
                Q_DCNf_W = Q_DCNf_W_with_server_demand

            Q_cooling_max_W = Q_DCNf_W.max()
    else:
        Q_cooling_max_W = 0.0
        network_file_name_cooling = ""

    Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK)
    Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK)

    return Q_cooling_nom_W, Q_heating_nom_W, network_file_name_cooling, network_file_name_heating