Ejemplo n.º 1
0
def analysis_run(args, file_name="summary_cell_counts.csv"):
    args = prep_atlas_conf(args)

    # if args.structures_file_path is None:
    #     args.structures_file_path = get_structures_path()

    atlas = brainio.load_any(args.paths.registered_atlas_path)
    hemisphere = brainio.load_any(args.paths.hemispheres_atlas_path)

    cells = get_cells_data(
        args.paths.classification_out_file, cells_only=args.cells_only,
    )
    max_coords = get_max_coords(cells)  # Useful for debugging dimensions
    # structures_reference_df = load_structures_as_df(args.structures_file_path)
    structures_reference_df = load_structures_as_df(get_structures_path())

    atlas_pixel_sizes = get_atlas_pixel_sizes(args.atlas_config)
    sample_pixel_sizes = args.x_pixel_um, args.y_pixel_um, args.z_pixel_um

    scales = get_scales(
        sample_pixel_sizes, atlas_pixel_sizes, args.scale_cell_coordinates
    )

    structures_with_cells = set()
    for i, cell in enumerate(tqdm(cells)):
        transform_cell_coords(atlas, cell, scales)

        structure_id = get_structure_from_coordinates(
            atlas,
            cell,
            max_coords,
            order=args.coordinates_order,
            structures_reference_df=structures_reference_df,
        )
        if structure_id is not None:
            cell.structure_id = structure_id

            structures_with_cells.add(structure_id)
        else:
            continue

        cell.hemisphere = get_structure_from_coordinates(
            hemisphere, cell, max_coords, order=args.coordinates_order
        )

    sorted_cell_numbers = get_cells_nbs_df(
        cells, structures_reference_df, structures_with_cells
    )

    combined_hemispheres = combine_df_hemispheres(sorted_cell_numbers)
    df = calculate_densities(combined_hemispheres, args.paths.volume_csv_path)
    df = sanitise_df(df)
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    output_file = os.path.join(args.output_dir, file_name)
    df.to_csv(output_file, index=False)
Ejemplo n.º 2
0
def xml_crop(args, df_query="name"):
    args = prep_atlas_conf(args)

    if args.structures_file_path is None:
        args.structures_file_path = get_structures_path()

    reference_struct_df = pd.read_csv(get_structures_path())

    curate_struct_df = pd.read_csv(args.structures_file_path)

    curate_struct_df = reference_struct_df[
        reference_struct_df[df_query].isin(curate_struct_df[df_query])
    ]

    curated_ids = list(curate_struct_df["structure_id_path"])

    atlas = brainio.load_any(args.registered_atlas_path)
    hemisphere = brainio.load_any(args.hemispheres_atlas_path)

    structures_reference_df = load_structures_as_df(get_structures_path())

    atlas_pixel_sizes = get_atlas_pixel_sizes(args.atlas_config)
    sample_pixel_sizes = args.x_pixel_um, args.y_pixel_um, args.z_pixel_um

    scales = cells_regions.get_scales(sample_pixel_sizes, atlas_pixel_sizes)

    destination_folder = os.path.join(args.xml_dir, "xml_crop")
    if not os.path.exists(destination_folder):
        os.makedirs(destination_folder)

    xml_names = [f for f in os.listdir(args.xml_dir) if f.endswith(".xml")]
    xml_paths = [os.path.join(args.xml_dir, f) for f in xml_names]

    for idx, xml_path in enumerate(xml_paths):
        print("Curating file: {}".format(xml_names[idx]))
        cells = cells_regions.get_cells_data(
            xml_path, cells_only=args.cells_only,
        )
        max_coords = cells_regions.get_max_coords(cells)

        curated_cells = []
        for i, cell in enumerate(cells):
            cells_regions.transform_cell_coords(atlas, cell, scales)

            structure_id = cells_regions.get_structure_from_coordinates(
                atlas,
                cell,
                max_coords,
                order=args.coordinates_order,
                structures_reference_df=structures_reference_df,
            )
            if structure_id in curated_ids:
                if args.hemisphere_query in [1, 2]:
                    hemisphere = cells_regions.get_structure_from_coordinates(
                        hemisphere,
                        cell,
                        max_coords,
                        order=args.coordinates_order,
                    )
                    if hemisphere is args.hemisphere_query:
                        curated_cells.append(cell)
                else:
                    curated_cells.append(cell)
        cells_to_xml(
            curated_cells,
            os.path.join(destination_folder, xml_names[idx]),
            artifact_keep=True,
        )
    print("Done!")
Ejemplo n.º 3
0
def main():
    suppress_tf_logging(tf_suppress_log_messages)
    import amap.main as register

    from cellfinder.tools import prep

    start_time = datetime.now()
    args, what_to_run = prep.prep_cellfinder_general()

    if what_to_run.register:
        # TODO: add register_part_brain option
        logging.info("Registering to atlas")
        args, additional_images_downsample = prep.prep_registration(args)

        register.main(
            args.registration_config,
            args.target_brain_path,
            args.paths.registration_output_folder,
            x_pixel_um=args.x_pixel_um,
            y_pixel_um=args.y_pixel_um,
            z_pixel_um=args.z_pixel_um,
            orientation=args.orientation,
            flip_x=args.flip_x,
            flip_y=args.flip_y,
            flip_z=args.flip_z,
            affine_n_steps=args.affine_n_steps,
            affine_use_n_steps=args.affine_use_n_steps,
            freeform_n_steps=args.freeform_n_steps,
            freeform_use_n_steps=args.freeform_use_n_steps,
            bending_energy_weight=args.bending_energy_weight,
            grid_spacing_x=args.grid_spacing_x,
            smoothing_sigma_reference=args.smoothing_sigma_reference,
            smoothing_sigma_floating=args.smoothing_sigma_floating,
            histogram_n_bins_floating=args.histogram_n_bins_floating,
            histogram_n_bins_reference=args.histogram_n_bins_reference,
            sort_input_file=args.sort_input_file,
            n_free_cpus=args.n_free_cpus,
            save_downsampled=not (args.no_save_downsampled),
            additional_images_downsample=additional_images_downsample,
            boundaries=not (args.no_boundaries),
            debug=args.debug,
        )
    else:
        logging.info("Skipping registration")

    if what_to_run.summarise:
        args = prep.prep_atlas_conf(args)

    if len(args.signal_planes_paths) > 1:
        base_directory = args.output_dir

        for idx, signal_paths in enumerate(args.signal_planes_paths):
            channel = args.signal_ch_ids[idx]
            logging.info("Processing channel: " + str(channel))
            channel_directory = os.path.join(
                base_directory, "channel_" + str(channel)
            )
            if not os.path.exists(channel_directory):
                os.makedirs(channel_directory)

            # prep signal channel specific args
            args.signal_planes_paths[0] = signal_paths
            # TODO: don't overwrite args.output_dir - use Paths instead
            args.output_dir = channel_directory
            args.signal_channel = channel
            # Run for each channel
            run_all(args, what_to_run)

    else:
        args.signal_channel = args.signal_ch_ids[0]
        run_all(args, what_to_run)
    logging.info(
        "Finished. Total time taken: {}".format(datetime.now() - start_time)
    )